Volume 34 Issue 9
Jun.  2022
Turn off MathJax
Article Contents
Ma Jianhao, Yu Liang, Ma Jiuxin, et al. All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator[J]. High Power Laser and Particle Beams, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580
Citation: Ma Jianhao, Yu Liang, Ma Jiuxin, et al. All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator[J]. High Power Laser and Particle Beams, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580

All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator

doi: 10.11884/HPLPB202234.210580
  • Received Date: 2021-12-31
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-20
  • Publish Date: 2022-06-17
  • The all-solid-state inductive energy storage pulse forming line modulator is a brand-new solution to achieve a high repetition rate, high voltage gain, and short pulse output. However, due to the non-ideal dynamic characteristics of the switch and the fixed physical space size of the transmission line, it's difficult to realize the generation and control of high-voltage short pulses. To solve the above problems, we established the switch drive model of the silicon carbide field-effect device through electromagnetic field analysis. It was found that high-speed drive and low parasitic parameters of the switch device can effectively improve the dynamic characteristics of the switch, and the onboard high-speed switch and drive integrated design solution were proposed. At the same time, based on wave process analysis and multi-switch sequential logic control theory, a multi-switch clipping circuit topology method and active load impedance modulation technology are proposed. Finally, an experimental platform was built to verify the above ideas. Experimental results show that the modulator can achieve a square wave short pulse with a rise time of 2.1 ns, a fall time of 3.5 ns, and a pulse width of 5.1 ns and the pulse width is continuously adjustable from 5 to 20 ns. After 10 levels of superposition, the regulator’s high voltage capability is verified. When the primary energy storage charging voltage is 25 V, the voltage gain can reach 336 times, and the repetition frequency is 200 kHz.
  • loading
  • [1]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2]
    江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010
    [3]
    Jiang Weihua, Yatsui K, Takayama K, et al. Compact solid-state switched pulsed power and its applications[J]. Proceedings of the IEEE, 2004, 92(7): 1180-1196. doi: 10.1109/JPROC.2004.829003
    [4]
    邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 doi: 10.13336/j.1003-6520.hve.20160308018

    Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 doi: 10.13336/j.1003-6520.hve.20160308018
    [5]
    Yao Chenguo, Hu Xiaoqian, Mi Yan, et al. Window effect of pulsed electric field on biological cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(5): 1259-1266. doi: 10.1109/TDEI.2009.5293936
    [6]
    Malik M A, Schoenbach K H, Abdel-Fattah T M, et al. Low cost compact nanosecond pulsed plasma system for environmental and biomedical applications[J]. Plasma Chemistry and Plasma Processing, 2017, 37(1): 59-76. doi: 10.1007/s11090-016-9747-9
    [7]
    Zhao Zhongyong, Yao Chenguo, Hashemnia N, et al. Determination of nanosecond pulse parameters on transfer function measurement for power transformer winding deformation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(6): 3761-3770. doi: 10.1109/TDEI.2016.005928
    [8]
    Buttram M. Some future directions for repetitive pulsed power[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 262-266. doi: 10.1109/TPS.2002.1003869
    [9]
    Elgenedy M A, Darwish A, Ahmed S, et al. A modular multilevel generic pulse-waveform generator for pulsed electric field applications[J]. IEEE Transactions on Plasma Science, 2017, 45(9): 2527-2535. doi: 10.1109/TPS.2017.2727068
    [10]
    Azizi M, van Oorschot J J, Huiskamp T. Ultrafast switching of SiC MOSFETs for high-voltage pulsed-power circuits[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4262-4272. doi: 10.1109/TPS.2020.3039372
    [11]
    江伟华. 高重复频率脉冲功率技术及其应用: (4)半导体开关的特长与局限性[J]. 强激光与粒子束, 2013, 25(3):537-543. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (IV) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(3): 537-543 doi: 10.3788/HPLPB20132503.0537

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (IV) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(3): 537-543 doi: 10.3788/HPLPB20132503.0537
    [12]
    余亮, 須貝太一, 德地明, 等. 电感储能型脉冲形成线高重复频率脉冲功率发生器[J]. 强激光与粒子束, 2018, 30:025006. (Yu Liang, Sugai T, Tokuchi A, et al. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30: 025006 doi: 10.11884/HPLPB201830.170390

    Yu Liang, Sugai T, Tokuchi A, et al. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30: 025006 doi: 10.11884/HPLPB201830.170390
    [13]
    Yu Liang, Jiu Zezheng, Sugai T, et al. Pulsed voltage adder topology based on inductive Blumlein lines[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1816-1820. doi: 10.1109/TPS.2018.2820103
    [14]
    Yu Liang, Feng Yu, Sugai T, et al. Voltage adding of pulse forming lines using inductive energy storage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2211-2215. doi: 10.1109/TDEI.2017.006421
    [15]
    Ma Jianhao, Dong Shoulong, Liu Hongmei, et al. A high-gain nanosecond pulse generator based on inductor energy storage and pulse forming line voltage superposition[C]//2019 IEEE Pulsed Power & Plasma Science (PPPS). 2019: 1-4.
    [16]
    张适昌, 严萍, 王珏, 等. 民用脉冲功率源的进展与展望[J]. 高电压技术, 2009, 35(3):618-631. (Zhang Shichang, Yan Ping, Wang Jue, et al. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631 doi: 10.13336/j.1003-6520.hve.2009.03.043

    Zhang Shichang, Yan Ping, Wang Jue, et al. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631 doi: 10.13336/j.1003-6520.hve.2009.03.043
    [17]
    de Angelis A, Kolb J F, Zeni L, et al. Kilovolt Blumlein pulse generator with variable pulse duration and polarity[J]. Review of Scientific Instruments, 2008, 79: 044301. doi: 10.1063/1.2901609
    [18]
    Canacsinh H, Redondo L M, Silva J F, et al. Solid-state bipolar Marx modulator modeling[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3048-3056. doi: 10.1109/TPS.2014.2337716
    [19]
    Peftitsis D, Rabkowski J. Gate and base drivers for silicon carbide power transistors: an overview[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7194-7213.
    [20]
    Ning Puqi, Lai Rixin, Huff D, et al. SiC wirebond multichip phase-leg module packaging design and testing for harsh environment[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 16-23. doi: 10.1109/TPEL.2009.2027324
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (744) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return