Volume 34 Issue 6
Apr.  2022
Turn off MathJax
Article Contents
Li Yun, Feng Guobao, Xie Guibai, et al. Multipactor evolution and suppression in high-power ferromagnetic components[J]. High Power Laser and Particle Beams, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479
Citation: Li Yun, Feng Guobao, Xie Guibai, et al. Multipactor evolution and suppression in high-power ferromagnetic components[J]. High Power Laser and Particle Beams, 2022, 34: 063002. doi: 10.11884/HPLPB202234.210479

Multipactor evolution and suppression in high-power ferromagnetic components

doi: 10.11884/HPLPB202234.210479
  • Received Date: 2021-11-09
  • Rev Recd Date: 2022-01-18
  • Available Online: 2022-02-16
  • Publish Date: 2022-06-15
  • Ferrite circulators are key components in the high-power microwave systems for the satellite payload application. Multipactor, which is prone to occur in the high-power vacuum system, is still a bottleneck problem for the on-orbit reliable system operation. The physical evolution model of multipactor in ferromagnetic components is proposed based on the secondary electron emission (SEE) properties. Using the model, the evolution laws of the initial electrons and multipacting electrons in practical components with micro-pore arrays are revealed. Furthermore, a novel anti-multipactor design method is proposed through controlling the surface SEE of the ferromagnetic material. A group of S-band circulators were designed and fabricated for the validation of the theory and design method. Calculation results and measurement data demonstrate that multipactor discharge has been suppressed successfully through lowering the surface SEE on the ferrite plates. Multipactor threshold power of the traditional circulator has been improved from 380 W to more than 3400 W using the optimized micro-pore structures, and the suppression efficiency is increased by more than 900%.
  • loading
  • [1]
    Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [2]
    翟永贵, 李记肖, 王洪广, 等. 微波器件微放电阈值功率自适应扫描方法[J]. 强激光与粒子束, 2018, 30:073006. (Zhai Yonggui, Li Jixiao, Wang Hongguang, et al. Adaptive scanning method for multipactor threshold prediction in microwave devices[J]. High Power Laser and Particle Beams, 2018, 30: 073006 doi: 10.11884/HPLPB201830.170530
    [3]
    王新波, 崔万照, 魏焕, 等. 微放电试验中种子电子加载方法比较[J]. 强激光与粒子束, 2018, 30:063010. (Wang Xinbo, Cui Wanzhao, Wei Huan, et al. Comparative study of electron seeding in multipactor test[J]. High Power Laser and Particle Beams, 2018, 30: 063010 doi: 10.11884/HPLPB201830.170310
    [4]
    刘婉, 翁明, 殷明, 等. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30:113001. (Liu Wan, Weng Ming, Yin Ming, et al. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30: 113001 doi: 10.11884/HPLPB201830.180086
    [5]
    何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003 doi: 10.11884/HPLPB202032.190318
    [6]
    Yang Jing, Cui Wanzhao, Li Yun, et al. Investigation of argon ion sputtering on the secondary electron emission from gold samples[J]. Applied Surface Science, 2016, 382: 88-92. doi: 10.1016/j.apsusc.2016.03.060
    [7]
    Schaub S C, Shapiro M A, Temkin R J. Measurement of dielectric multipactor thresholds at 110 GHz[J]. Physical Review Letters, 2019, 123: 175001. doi: 10.1103/PhysRevLett.123.175001
    [8]
    Berenguer A, Coves Á, Mesa F, et al. Analysis of multipactor effect in a partially dielectric-loaded rectangular waveguide[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 259-265. doi: 10.1109/TPS.2018.2880652
    [9]
    Zhang Ziyi, Sun Yanzi, Cui Wanzhao, et al. An analytical model of one-sided multipactor on a dielectric of a metal surface for spacecraft application[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4921-4927. doi: 10.1109/TED.2019.2937752
    [10]
    Rozario N, Lenzing H F, Reardon K F, et al. Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 558-564. doi: 10.1109/22.285060
    [11]
    González-Iglesias D, Gimeno B, Boria V E, et al. Multipactor effect in a parallel-plate waveguide partially filled with magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2552-2557. doi: 10.1109/TED.2014.2322395
    [12]
    Shalaby M, Peccianti M, Ozturk Y, et al. A magnetic non-reciprocal isolator for broadband terahertz operation[J]. Nature Communications, 2013, 4: 1558. doi: 10.1038/ncomms2572
    [13]
    González-Iglesias D, Gómez Á, Gimeno B, et al. Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite[J]. IEEE Transactions on Electron Devices, 2016, 63(12): 4939-4947. doi: 10.1109/TED.2016.2614370
    [14]
    Vague J, Melgarejo J C, Boria V E, et al. Experimental validation of multipactor effect for ferrite materials used in L- and S-band nonreciprocal microwave components[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(6): 2151-2161. doi: 10.1109/TMTT.2019.2915546
    [15]
    王洪广, 翟永贵, 李记肖, 等. 基于频域电磁场的微波器件微放电阈值快速粒子模拟[J]. 物理学报, 2016, 65:237901. (Wang Hongguang, Zhai Yonggui, Li Jixiao, et al. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions[J]. Acta Physica Sinica, 2016, 65: 237901 doi: 10.7498/aps.65.237901
    [16]
    Zhai Yonggui, Wang Hongguang, Zhang Lei, et al. Effect of secondary emission yield and initial charge of dielectric material on multipactor in parallel-plate dielectric-loaded waveguide[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5333-5338. doi: 10.1109/TED.2019.2947641
    [17]
    翟永贵, 王瑞, 王洪广, 等. 铁氧体环形器微放电阈值快速粒子模拟[J]. 真空电子技术, 2017(2):11-13,28. (Zhai Yonggui, Wang Rui, Wang Hongguang, et al. Fast particle-in-cell method for multipactor threshold calculation of ferrite circulator[J]. Vacuum Electronics, 2017(2): 11-13,28
    [18]
    Aguilera L, Montero I, Olano L, et al. Secondary emission yield at low-primary energies of magnetic materials for anti-multipactor applications[C]//Proceedings of the International Workshop on Multipactor, Corona and Passive Intermodulation. Valencia, Spain, 2014: S126.
    [19]
    Chen C H, Chang C, Liu W Y, et al. Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface[J]. Journal of Applied Physics, 2013, 114: 163304. doi: 10.1063/1.4826627
    [20]
    Ye Ming, He Yongning, Hu Shaoguang, et al. Investigation into anomalous total secondary electron yield for micro-porous Ag surface under oblique incidence conditions[J]. Journal of Applied Physics, 2013, 114: 104905. doi: 10.1063/1.4821138
    [21]
    叶鸣, 贺永宁, 王瑞, 等. 基于微陷阱结构的金属二次电子发射系数抑制研究[J]. 物理学报, 2014, 63:147901. (Ye Ming, He Yongning, Wang Rui, et al. Suppression of secondary electron emission by micro-trapping structure surface[J]. Acta Physica Sinica, 2014, 63: 147901 doi: 10.7498/aps.63.147901
    [22]
    Li Yun, Ye Ming, He Yongning, et al. Surface effect investigation on multipactor in microwave components using the EM-PIC method[J]. Physics of Plasmas, 2017, 24: 113505. doi: 10.1063/1.5003124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (680) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return