Volume 34 Issue 7
May  2022
Turn off MathJax
Article Contents
Wang Yuchen, Liu Xiaoyan, Huang Yiyun, et al. Design and experiment of Hopkinson bar electromagnetic loading system[J]. High Power Laser and Particle Beams, 2022, 34: 075009. doi: 10.11884/HPLPB202234.210486
Citation: Wang Yuchen, Liu Xiaoyan, Huang Yiyun, et al. Design and experiment of Hopkinson bar electromagnetic loading system[J]. High Power Laser and Particle Beams, 2022, 34: 075009. doi: 10.11884/HPLPB202234.210486

Design and experiment of Hopkinson bar electromagnetic loading system

doi: 10.11884/HPLPB202234.210486
  • Received Date: 2021-11-12
  • Accepted Date: 2022-03-21
  • Rev Recd Date: 2022-02-24
  • Available Online: 2022-03-28
  • Publish Date: 2022-05-12
  • An electromagnetic loading system is designed to be applied to a separate Hopkinson rod experimental device. It can overcome the shortcomings of traditional pneumatic drive and achieve the purpose of accurately controlling the incident stress. The low-voltage loading method is determined through the investigation of electromagnetic loading technology, then the system equivalent RLC loop is constructed, and the functional relationship between the loop parameters and the incident stress wave is derived. Combining theoretical calculation results, using finite element software for coupling field simulation, the simulation shows that the number of turns of the active coil has a great impact on the pulse width and amplitude of the incident stress. At the same time, to ensure the utilization efficiency of electromagnetic energy, it is necessary to ensure that the thickness of the inductive coil is greater than the depth of magnetic penetration, and determine the parameters of the electromagnetic loading system according to the experimental requirements. An experimental platform was built to carry out the Hopkinson bar impact experiment, and the correctness of the theoretical calculation and software simulation was verified through the measurement of the incident stress.
  • loading
  • [1]
    卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013

    Lu Fangyun, Chen Rong, Lin Yuliang, et al. Hopkinson bar techniques[M]. Beijing: Science Press, 2013
    [2]
    Chen Weinong, Song Bo. Split Hopkinson (Kolsky) bar: design, testing and applications[M]. New York: Springer, 2011.
    [3]
    李玉龙, 聂海亮, 汤忠斌, 等. 一种分离式霍普金森压杆实验装置: CN203894129U[P]. 2014-10-22

    Li Yulong, Nie Hailiang, Tang Zhongbin, et al. Split Hopkinson pressure bar experimental device: CN203894129U[P]. 2014-10-22
    [4]
    Nie Hailiang, Suo Tao, Wu Beibei, et al. A versatile split Hopkinson pressure bar using electromagnetic loading[J]. International Journal of Impact Engineering, 2018, 116: 94-104.
    [5]
    曹增强, 左杨杰. 电磁铆接[M]. 北京: 国防工业出版社, 2018

    Cao Zengqiang, Zuo Yangjie. Electromagnetic riveting[M]. Beijing: National Defense Industry Press, 2018
    [6]
    张俊峰. 低压电磁铆接技术研究[D]. 西安: 西北工业大学, 2001

    Zhang Junfeng. Research on low voltage electromagnetic riveting technology[D]. Xi’an: Northwestern Polytechnical University, 2001
    [7]
    邓将华, 李春峰. 电磁铆接技术研究概况及发展趋势[J]. 锻压技术, 2006, 31(5):10-14. (Deng Jianghua, Li Chunfeng. Current status and trends in researches on electromagnetic riveting[J]. Forging & Stamping Technology, 2006, 31(5): 10-14 doi: 10.3969/j.issn.1000-3940.2006.05.003

    Deng Jianghua, Li Chunfeng. Current status and trends in researches on electromagnetic riveting[J]. Forging & Stamping Technology, 2006, 31(5): 10-14 doi: 10.3969/j.issn.1000-3940.2006.05.003
    [8]
    邓将华, 郑义明, 唐超, 等. 低压电磁铆接放电电流分析[J]. 塑性工程学报, 2013, 20(1):108-112. (Deng Jianghua, Zheng Yiming, Tang Chao, et al. Analysis of discharge current in low voltage electromagnetic riveting[J]. Journal of Plasticity Engineering, 2013, 20(1): 108-112 doi: 10.3969/j.issn.1007-2012.2013.01.022

    Deng Jianghua, Zheng Yiming, Tang Chao, et al. Analysis of discharge current in low voltage electromagnetic riveting[J]. Journal of Plasticity Engineering, 2013, 20(1): 108-112 doi: 10.3969/j.issn.1007-2012.2013.01.022
    [9]
    陈永真, 李锦. 电容器手册[M]. 北京: 科学出版社, 2008

    Chen Yongzhen, Li Jin. Capacitor handbook[M]. Beijing: Science Presss, 2008
    [10]
    Huang Wenkai, Chen Guangxin, Hu Mingbin, et al. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch[J]. Review of Scientific Instruments, 2019, 90: 025110.
    [11]
    Xie Beixin, Xu Peidong, Tang Liqun, et al. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system[J]. International Journal of Applied Mechanics, 2019, 11: 1950018.
    [12]
    Guo Yazhou, Du Bing, Liu Huifang, et al. Electromagnetic Hopkinson bar: a powerful scientific instrument to study mechanical behavior of materials at high strain rates[J]. Review of Scientific Instruments, 2020, 91: 081501.
    [13]
    王泽忠, 全玉生, 卢斌先. 工程电磁场[M]. 北京: 清华大学出版社, 2004

    Wang Zezhong, Quan Yusheng, Lu Binxian. Engineering electromagnetic field[M]. Beijing: Tsinghua University Press, 2004
    [14]
    卡兰塔罗夫, 采依特林. 电感计算手册[M]. 陈汤铭, 刘保安, 罗应立, 等译. 北京: 机械工业出版社, 1992

    Калантаров П Л, Цейтлин Л А. Inductance calculation manual[M]. Chen Tangming, Liu Baoan, Luo Yingli, et al, trans. Beijing: China Machine Press, 1992
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (786) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return