Volume 34 Issue 6
Apr.  2022
Turn off MathJax
Article Contents
Gong Youwei, Cheng Wencai, Zhao Minghua, et al. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491
Citation: Gong Youwei, Cheng Wencai, Zhao Minghua, et al. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34: 064007. doi: 10.11884/HPLPB202234.210491

Influence of SXFEL resistive wall wakefield on beam phase space distortion

doi: 10.11884/HPLPB202234.210491
More Information
  • X-ray free-electron laser (XFEL), due to its ultra-high brightness, ultra-short pulse and other characteristics, has been built worldwide. Based on the theory of wakefield, we calculate the resistive wall wakefield from the linear accelerator (linac) exit to the end of the undulator in Shanghai X-ray free electron laser (SXFEL) with bunch traveling through the 245 m stainless steel transfer line and copper beamline in undulator. Then we analyze the resistive wall wakefields which eventually lead to the distortion of the longitudinal phase space within the bunch. Finally, the theoretical predictions of influence of resistive wall wakefield are compared with experiment results on SXFEL, which shows great agreement. The detailed research provides a direction for subsequent FEL optimization.

  • loading
  • [1]
    Kim K J. Brightness, coherence and propagation characteristics of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1/3): 71-76. doi: 10.1016/0168-9002(86)90048-3
    [2]
    Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 2015, 347(6225): 978-982. doi: 10.1126/science.1261747
    [3]
    Young L, Kanter E P, Krässig B, et al. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61. doi: 10.1038/nature09177
    [4]
    Liu Hailin, Hu Jie, Jiang Lan, et al. Ultrabroad antireflection urchin-like array through synergy of inverse fabrications by femtosecond laser-tuned chemical process[J]. Applied Surface Science, 2020, 528: 146804. doi: 10.1016/j.apsusc.2020.146804
    [5]
    Cheng C H, Li Ming. Nanometer material processing using NSOM-delivered femtosecond laser pulses[J]. MRS Online Proceedings Library, 2004, 850(1): 104-109. doi: 10.1557/PROC-850-MM2.8
    [6]
    Geng Heping, Chen Jiahui, Zhao Zhentang. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL[J]. Nuclear Science and Techniques, 2020, 31(9): 88. doi: 10.1007/s41365-020-00794-7
    [7]
    Wang Jinguo, Liu Bo. Development of readout electronics for bunch arrival-time monitor system at SXFEL[J]. Nuclear Science and Techniques, 2019, 30: 82. doi: 10.1007/s41365-019-0594-2
    [8]
    Xiao Chengcheng, Zhang Junqiang, Tan Jianhao, et al. Design and preliminary test of the LLRF in C band high-gradient test facility for SXFEL[J]. Nuclear Science and Techniques, 2020, 31: 100. doi: 10.1007/s41365-020-00806-6
    [9]
    Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097. doi: 10.1016/j.xinn.2021.100097
    [10]
    Zhao Zhentang, Wang Dong, Yin Lixin, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100004. doi: 10.3788/CJL201946.0100004
    [11]
    Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607
    [12]
    Chao A W. Physics of collective beam instabilities in high energy accelerators[M]. New York: Wiley, 1993.
    [13]
    Bane K L F. Wakefields of sub-picosecond electron bunches[R]. Report No. SLAC-PUB-11829, 2006.
    [14]
    Bane K L F, Sands M. The short-range resistive wall wakefields[J]. AIP Conference Proceedings, 1996, 367(1): 131-149. doi: 10.1063/1.50300
    [15]
    Bane K, Raubenheimer T. Raubenheimer. Wakefield effects of the bypass line in LCLS-II[R]. Report No. SLAC-PUB-16142, 2014.
    [16]
    Stupakov G, Bane K L F, Emma P, et al. Resistive wall wakefields of short bunches at cryogenic temperatures[J]. Physical Review Accelerators and Beams, 2015, 18: 034402. doi: 10.1103/PhysRevSTAB.18.034402
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (639) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return