Volume 34 Issue 6
Apr.  2022
Turn off MathJax
Article Contents
Li Dikai, Cao Leifeng, Chi Yunlong, et al. Radiation protection analysis of 95 MeV RF electron linac[J]. High Power Laser and Particle Beams, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518
Citation: Li Dikai, Cao Leifeng, Chi Yunlong, et al. Radiation protection analysis of 95 MeV RF electron linac[J]. High Power Laser and Particle Beams, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518

Radiation protection analysis of 95 MeV RF electron linac

doi: 10.11884/HPLPB202234.210518
  • Received Date: 2021-11-25
  • Rev Recd Date: 2022-03-16
  • Available Online: 2022-04-06
  • Publish Date: 2022-06-15
  • According to the requirements of relevant construction safety assessment, environmental assessment, stability assessment and occupational health assessment, the radiation situation of electron accelerator should be analyzed in the design process. The radiation source of photocathode RF electron gun linac with adjustable electron energy from 40 MeV to 95 MeV was analyzed, and the effect of possible radiation protection was discussed. Monte Carlo software FLUKA was used to model the electron beam and accelerator. Through simulation calculation, it is found that the dose equivalent distribution generated by the accelerator is mainly located in the beam dump, and the radiation dose outside the beam dump decreases rapidly. When the concrete shielding wall is set around the electron accelerator experimental hall, the radiation dose equivalent will decrease rapidly with the wall thickness. If the thickness of the concrete shielding wall was set to 1 m, the radiation dose equivalent in the area where the staff outside the shielding wall were located should not be higher than 1 μSv/h. So, the wall can effectively shield the ionizing radiation generated by the accelerator and provide effective protection for the staff.
  • loading
  • [1]
    赵振堂, 高杰. 高能粒子对撞机加速器物理与设计[M]. 上海: 上海交通大学出版社, 2020

    Zhao Zhentang, Gao Jie. Physics and design for accelerators of high energy particle colliders[M]. Shanghai: Shanghai Jiao Tong University Press, 2020
    [2]
    李成龙, 汤振兴, 裴元吉. 低发射度L波段光阴极微波电子枪物理设计[J]. 核技术, 2016, 39:090203. (Li Chenglong, Tang Zhenxing, Pei Yuanji. Physical design of low-emittance L-band photocathode microwave electron gun[J]. Nuclear Techniques, 2016, 39: 090203 doi: 10.11889/j.0253-3219.2016.hjs.39.090203
    [3]
    陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012. (Chen Jia’er. Physics basics of accelerator[M]. Beijing: Peking University Press, 2012))
    [4]
    方锦清, 陈关荣. 强流加速器中的束晕-混沌现象的定性分析[J]. 中国原子能科学研究院年报, 2000:69-70. (Fang Jinqing, Chen Guanrong. Qualitative analysis of beam halo chaos in high current accelerator[J]. Annual Report for China Institute of Atomic Energy, 2000: 69-70
    [5]
    何丽娟. 高能电子直线加速器(NSRL Linac)感生放射性研究[D]. 合肥: 中国科学技术大学, 2016: 7-30

    He Lijuan. Induced radioactivity research of high-energy electron linear accelerator (NSRL Linac)[D]. Hefei: University of Science and Technology of China, 2016: 7-30
    [6]
    GB 5172-1985, 粒子加速器辐射防护规定[S]

    GB 5172-1985, The rule for radiation protection of particle accelerators[S]
    [7]
    HJ 979-2018, 电子加速器辐照装置辐射安全和防护[S]

    HJ 979-2018, Radiation safety and protection on electron accelerator irradiation facilities[S]
    [8]
    邱睿, 李君利, 武祯, 等. 四种蒙特卡罗程序的比较计算[J]. 原子能科学技术, 2008, 42(12):1149-1152. (Qiu Rui, Li Junli, Wu Zhen, et al. Comparison calculation of four Monte-Carlo codes[J]. Atomic Energy Science and Technology, 2008, 42(12): 1149-1152
    [9]
    Diamond W T, Ross C K. Actinium-225 production with an electron accelerator[J]. Journal of Applied Physics, 2021, 129: 104901. doi: 10.1063/5.0043509
    [10]
    Huang Mingyang. Study of accelerator neutrino detection at a spallation source[J]. Chinese Physics C, 2016, 40: 063002. doi: 10.1088/1674-1137/40/6/063002
    [11]
    Perillo-Marcone A, Calviani M, Solieri N, et al. Design and operation of the air-cooled beam dump for the extraction line of CERN's Proton Synchrotron Booster[J]. Physical Review Accelerators and Beams, 2020, 23: 063001. doi: 10.1103/PhysRevAccelBeams.23.063001
    [12]
    Ganter R. SwissFEL conceptual design report[R]. PSI Bericht 10-04, 2011: 10-04.
    [13]
    Ahdida C, Bozzato D, Calzolari D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253
    [14]
    Battistoni G, Boehlen T, Cerutti F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007
    [15]
    Vlachoudis V. FLAIR: a powerful but user friendly graphical interface for FLUKA[C]//Proceedings of International Conference on Mathematics, Computational Methods & Reactor Physics. New York: American Nuclear Society, 2009, 2: 790-800.
    [16]
    Kutcher G J. Radiation protection design guidelines for 0.1 to 100 MeV particle accelerator facilities[J]. Medical Physics, 1978, 5(1): 73. doi: 10.1118/1.594404
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (755) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return