Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Shi Junjie, Hao Jianhong, Zhang Fang, et al. Simulation of long-range transport of non-ideal hydrogen atom beams in vacuum environment[J]. High Power Laser and Particle Beams, 2022, 34: 124004. doi: 10.11884/HPLPB202234.220123
Citation: Shi Junjie, Hao Jianhong, Zhang Fang, et al. Simulation of long-range transport of non-ideal hydrogen atom beams in vacuum environment[J]. High Power Laser and Particle Beams, 2022, 34: 124004. doi: 10.11884/HPLPB202234.220123

Simulation of long-range transport of non-ideal hydrogen atom beams in vacuum environment

doi: 10.11884/HPLPB202234.220123
  • Received Date: 2022-04-25
  • Accepted Date: 2022-09-01
  • Rev Recd Date: 2022-08-29
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • Neutral beam has potential applications in space debris cleanup and space exploration. As that neutral beam prepared by ion source is not ideal in practice, this paper simulates the long-range transmission effect of non-ideal hydrogen beam in vacuum environment. According to the degree of neutralization, non-ideal beams are divided into under-neutral beams and over-neutral beams. The effects of beam density, neutralization factor, spatial magnetic field and elastic scattering on the nonideal hydrogen beam are studied by establishing a quasi-electromagnetic model of beam transmission. The results show that the presence of negative hydrogen ions has no effect on the transmission of hydrogen atoms in the under-neutral beam, thus the bias magnetic field can be removed to reduce the volume and mass of the device. For the over-neutral beam, the loss ratio is related to the beam density and neutralization factor, that is, the higher the beam density, the greater the beam loss; the higher the neutralization factor, the higher the beam loss. The magnetic field and the elastic scattering between particles have no effect on the propagation of either the under-neutral or over-neutral beams.
  • loading
  • [1]
    Kitamura S, Hayakawa Y, Kawamoto S. A reorbiter for large GEO debris objects using ion beam irradiation[J]. Acta Astronautica, 2014, 94(2): 725-735. doi: 10.1016/j.actaastro.2013.07.037
    [2]
    Bombardelli C, Peláez J. Ion beam shepherd for contactless space debris removal[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 916-920. doi: 10.2514/1.51832
    [3]
    马晓刚. 基于离子束的非接触式空间碎片清除方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017

    Ma Xiaogang. A study of contactless space debris removal based on ion-beam-propelled method[D]. Harbin: Harbin Institute of Technology, 2017
    [4]
    侯伟. 中性束加热等离子体数值模拟研究[D]. 衡阳: 南华大学, 2013

    Hou Wei. Numerical simulation of neutral beam heated plasma[D]. Hengyang: University of South China, 2013
    [5]
    谢亚红, 胡纯栋, 韦江龙, 等. CFETR中性束注入系统负离子束源概念设计[J]. 核聚变与等离子体物理, 2021, 41(4):628-634 doi: 10.16568/j.0254-6086.202104008

    Xie Yahong, Hu Chundong, Wei Jianglong, et al. Conceptual design of negative ion based beam source for CFETR neutral beam injector[J]. Nuclear Fusion and Plasma Physics, 2021, 41(4): 628-634 doi: 10.16568/j.0254-6086.202104008
    [6]
    胡立群, 张晓东, 姚若河. EAST托卡马克的中性束注入方案[J]. 核技术, 2006, 29(2):149-152 doi: 10.3321/j.issn:0253-3219.2006.02.018

    Hu Liqun, Zhang Xiaodong, Yao Ruohe. EAST neutral beam injection project for EAST Tokamak[J]. Nuclear Techniques, 2006, 29(2): 149-152 doi: 10.3321/j.issn:0253-3219.2006.02.018
    [7]
    Jason A J, Hudgings D W, Van Dyck O B. Neutralization of H beams by magnetic stripping[J]. IEEE Transactions on Nuclear Science, 1981, 28(3): 2703-2706. doi: 10.1109/TNS.1981.4331890
    [8]
    Hayashi K, Tanaka D, Araki H, et al. In situ spatial-profile monitoring of beam flux of neutral free radicals produced by photo-deionization of negative ion beams[J]. Applied Surface Science, 2009, 255(24): 9581-9584. doi: 10.1016/j.apsusc.2009.04.085
    [9]
    Lee C H, Chang D S, Oh B H, et al. Hydrogen beam extraction of penning ion source for compact neutron generator[C]//2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016: 1-3.
    [10]
    Dimov G I, Roslyakov G V. Conversion of a beam of negative hydrogen ions to atomic hydrogen in a plasma target at energies between 0.5 and 1 MeV[J]. Nuclear Fusion, 1975, 15(3): 551-553. doi: 10.1088/0029-5515/15/3/021
    [11]
    Tanaka M, Takeiri Y, Asano E, et al. Production of high-current large-area H beams by a bucket-type ion source equipped with a magnetic filter[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1412-1418. doi: 10.1109/27.650911
    [12]
    易书卷, 陈开芹, 蒋文, 等. 剥离氢负离子获得中性束[J]. 核聚变与等离子体物理, 1983, 3(3):166-169 doi: 10.16568/j.0254-6086.1983.03.007

    Yi Shujuan, Chen Kaiqin, Jiang Wen, et al. The neutral beam obtained by stripping H ions[J]. Nuclear Fusion and Plasma Physics, 1983, 3(3): 166-169 doi: 10.16568/j.0254-6086.1983.03.007
    [13]
    吴青峰, 陈银宝, 王修龙, 等. 粒子束中性化方案研究[J]. 中国原子能科学研究院年报, 2003:85

    Wu Qingfeng, Chen Yinbao, Wang Xiulong, et al. Study on neutralization scheme of particle beam[J]. Annual Report of China Institute of Atomic Energy, 2003: 85
    [14]
    易书卷, 蒋文, 李华君. 氢离子束通过气体靶获得中性束的实验结果[J]. 核聚变与等离子体物理, 1981, 1(2):103-106 doi: 10.16568/j.0254-6086.1981.02.007

    Yi Shujuan, Jiang Wen, Li Huajun. Experimental results on atomic hydrogen beams produced by hydrogen ions passing through gaseous targets[J]. Nuclear Fusion and Plasma Physics, 1981, 1(2): 103-106 doi: 10.16568/j.0254-6086.1981.02.007
    [15]
    Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85. doi: 10.1109/27.106800
    [16]
    郝建红, 王希, 张芳, 等. 随移动窗推进的带电粒子束团长程传输模拟分析[J]. 国防科技大学学报, 2021, 43(5):168-174 doi: 10.11887/j.cn.202105020

    Hao Jianhong, Wang Xi, Zhang Fang, et al. Simulation analysis of long-range propagation of charged particle beams propelled by moving window[J]. Journal of National University of Defense Technology, 2021, 43(5): 168-174 doi: 10.11887/j.cn.202105020
    [17]
    Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
    [18]
    沈硕, 郝建红, 张芳, 等. 氢原子束在大气长程传输中自剥离效应研究[J]. 强激光与粒子束, 2022, 34:064004

    Shen Shuo, Hao Jianhong, Zhang Fang, et al. Study on beam-induced-stripping effect of hydrogen atom beam in long distance propagation in atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 064004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (582) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return