Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Gong Zheng. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114
Citation: Gong Zheng. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114

Research progress on radiative spin polarized plasma

doi: 10.11884/HPLPB202335.220114
  • Received Date: 2022-04-19
  • Rev Recd Date: 2022-08-10
  • Available Online: 2022-08-18
  • Publish Date: 2023-01-15
  • Spin-polarized plasma induced by the radiative spin flips in ultrarelativistic laser-matter interaction attracts great attention. Spin-polarized electron beams are broadly utilized in probing the structure of solid-state materials, exploring nucleon structure, and facilitating the analyses of the electroweak interaction. Electron spin, an intrinsic property of the electrons, could provide a new degree of freedom of information in characterizing plasma collective behaviors. In this manuscript, we review the mechanism of the production of radiative spin-polarized plasma and discuss its potential application in retrieving the transient ultrarelativistic plasmas.
  • loading
  • [1]
    Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [2]
    Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. doi: 10.1103/RevModPhys.78.309
    [3]
    Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
    [4]
    Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [5]
    Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
    [6]
    Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [7]
    Shen Baifei, Bu Zhigang, Xu Jiancai, et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044002. doi: 10.1088/1361-6587/aaa7fb
    [8]
    Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [9]
    Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [10]
    Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
    [11]
    Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
    [12]
    Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2011, 53: 014004. doi: 10.1088/0741-3335/53/1/014004
    [13]
    Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [14]
    Gong Zheng, Hu Ronghao, Shou Yinren, et al. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams[J]. Matter and Radiation at Extremes, 2016, 1(6): 308-315. doi: 10.1016/j.mre.2016.10.005
    [15]
    Qiao Bin, Chang Hengxin, Xie Y, et al. Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes[J]. Physics of Plasmas, 2017, 24: 123101. doi: 10.1063/1.5013019
    [16]
    Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 2018, 1: 93. doi: 10.1038/s42005-018-0095-3
    [17]
    Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
    [18]
    Baier V N, Katkov V M. Radiational polarization of electrons in inhomogeneous magnetic field[J]. Physics Letters A, 1967, 24(6): 327-329. doi: 10.1016/0375-9601(67)90608-1
    [19]
    Baĭer V N. Radiative polarization of electrons in storage rings[J]. Soviet Physics Uspekhi, 1972, 14(6): 695-714. doi: 10.1070/PU1972v014n06ABEH004751
    [20]
    Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [21]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [22]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [23]
    Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [24]
    Chen Hui, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 2009, 16: 122702. doi: 10.1063/1.3271355
    [25]
    Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [26]
    Derbenev Y S, Kondratenko A M. Polarization kinetics of particles in storage rings[J]. Soviet Physics JETP, 1973, 37(6): 968-973.
    [27]
    Del Sorbo D, Seipt D, Blackburn T G, et al. Spin polarization of electrons by ultraintense lasers[J]. Physical Review A, 2017, 96: 043407. doi: 10.1103/PhysRevA.96.043407
    [28]
    Seipt D, Del Sorbo D, Ridgers C P, et al. Theory of radiative electron polarization in strong laser fields[J]. Physical Review A, 2018, 98: 023417. doi: 10.1103/PhysRevA.98.023417
    [29]
    Del Sorbo D, Seipt D, Thomas A G R, et al. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064003. doi: 10.1088/1361-6587/aab979
    [30]
    Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [31]
    Li Yanfei, Guo Rentong, Shaisultanov R, et al. Electron polarimetry with nonlinear Compton scattering[J]. Physical Review Applied, 2019, 12: 014047. doi: 10.1103/PhysRevApplied.12.014047
    [32]
    Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [33]
    Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [34]
    Song Huaihang, Wang Weimin, Li Jianxing, et al. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse[J]. Physical Review A, 2019, 100: 033407. doi: 10.1103/PhysRevA.100.033407
    [35]
    Seipt D, Del Sorbo D, Ridgers C P, et al. Ultrafast polarization of an electron beam in an intense bichromatic laser field[J]. Physical Review A, 2019, 100: 061402(R). doi: 10.1103/PhysRevA.100.061402
    [36]
    Geng Xuesong, Ji Liangliang, Shen B F, et al. Spin-dependent radiative deflection in the quantum radiation-reaction regime[J]. New Journal of Physics, 2020, 22: 013007. doi: 10.1088/1367-2630/ab623b
    [37]
    Wen Meng, Tamburini M, Keitel C H. Polarized laser-wakefield-accelerated kiloampere electron beams[J]. Physical Review Letters, 2019, 122: 214801. doi: 10.1103/PhysRevLett.122.214801
    [38]
    Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron-beam acceleration driven by vortex laser pulses[J]. New Journal of Physics, 2019, 21: 073052. doi: 10.1088/1367-2630/ab2fd7
    [39]
    Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection[J]. Physical Review E, 2019, 100: 043202. doi: 10.1103/PhysRevE.100.043202
    [40]
    Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Physical Review Applied, 2020, 13: 044064. doi: 10.1103/PhysRevApplied.13.044064
    [41]
    Hützen A, Thomas J, Böker J, et al. Polarized proton beams from laser-induced plasmas[J]. High Power Laser Science and Engineering, 2019, 7: e16. doi: 10.1017/hpl.2018.73
    [42]
    Jin Luling, Wen Meng, Zhang Xiaomei, et al. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses[J]. Physical Review E, 2020, 102: 011201(R). doi: 10.1103/PhysRevE.102.011201
    [43]
    Gong Zheng, Shou Yinren, Tang Yuhui, et al. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma[J]. Physical Review E, 2020, 102: 053212. doi: 10.1103/PhysRevE.102.053212
    [44]
    Li X F, Gibbon P, Hützen A, et al. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas[J]. Physical Review E, 2021, 104: 015216. doi: 10.1103/PhysRevE.104.015216
    [45]
    Reichwein L, Büscher M, Pukhov A. Acceleration of spin-polarized proton beams via two parallel laser pulses[DB/OL]. arXiv preprint arXiv: 2201.11534, 2022.
    [46]
    Büscher M, Hützen A, Ji Liangliang, et al. Generation of polarized particle beams at relativistic laser intensities[J]. High Power Laser Science and Engineering, 2020, 8: e36. doi: 10.1017/hpl.2020.35
    [47]
    Thomas B A L H. I. The kinematics of an electron with an axis[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 3(13): 1-22. doi: 10.1080/14786440108564170
    [48]
    Bargmann V, Michel L, Telegdi V L. Precession of the polarization of particles moving in a homogeneous electromagnetic field[M]//Noz M E, Kim Y S. Special Relativity and Quantum Theory. Dordrecht: Springer, 1988: 443-446.
    [49]
    Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [50]
    Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
    [51]
    Gonoskov A, Bastrakov S, Efimenko E, et al. Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments[J]. Physical Review E, 2015, 92: 023305. doi: 10.1103/PhysRevE.92.023305
    [52]
    Gong Zheng, Hu Ronghao, Yu Jinqing, et al. Radiation rebound and quantum splash in electron-laser collisions[J]. Physical Review Accelerators and Beams, 2019, 22: 093401. doi: 10.1103/PhysRevAccelBeams.22.093401
    [53]
    Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [54]
    Chen Yueyue, Hatsagortsyan K Z, Keitel C H, et al. Electron spin- and photon polarization-resolved probabilities of strong-field QED processes[J]. Physical Review D, 2022, 105: 116013. doi: 10.1103/PhysRevD.105.116013
    [55]
    Xue Kun, Guo Rentong, Wan Feng, et al. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process[J]. Fundamental Research, 2022, 2(4): 539-545. doi: 10.1016/j.fmre.2021.11.022
    [56]
    Tang Yuhui, Gong Zheng, Yu Jinqing, et al. Radiative polarization dynamics of relativistic electrons in an intense electromagnetic field[J]. Physical Review A, 2021, 103: 042807. doi: 10.1103/PhysRevA.103.042807
    [57]
    Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 2022, 128: 174801. doi: 10.1103/PhysRevLett.128.174801
    [58]
    Gong Zheng, Hatsagortsyan K Z, Keitel C H. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization[J]. Physical Review Letters, 2021, 127: 165002. doi: 10.1103/PhysRevLett.127.165002
    [59]
    Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [60]
    Pukhov A, Meyer-Ter-Vehn J. Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation[J]. Physical Review Letters, 1996, 76(21): 3975-3978. doi: 10.1103/PhysRevLett.76.3975
    [61]
    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [62]
    Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
    [63]
    Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 2020, 102: 013206. doi: 10.1103/PhysRevE.102.013206
    [64]
    Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
    [65]
    Xue Kun, Dou Zhenke, Wan Feng, et al. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5: 054402. doi: 10.1063/5.0007734
    [66]
    Wan Feng, Wang Yu, Guo Rentong, et al. High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry[J]. Physical Review Research, 2020, 2: 032049(R). doi: 10.1103/PhysRevResearch.2.032049
    [67]
    孙婷, 王宇, 郭任彤, 等. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展[J]. 物理学报, 2021, 70:087901 doi: 10.7498/aps.70.20210009

    Sun Ting, Wang Yu, Guo Rentong, et al. Review on laser-driven high-energy polarized electron and positron beams and γ-rays[J]. Acta Physica Sinica, 2021, 70: 087901 doi: 10.7498/aps.70.20210009
    [68]
    Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7: 014401. doi: 10.1063/5.0063633
    [69]
    Gong Zheng, Hatsagortsyan K Z, Keitel C H. Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons[J]. Physical Review Research, 2022, 4: L022024. doi: 10.1103/PhysRevResearch.4.L022024
    [70]
    Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
    [71]
    Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 2022, 129: 035001. doi: 10.1103/PhysRevLett.129.035001
    [72]
    Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
    [73]
    Nie Zan, Li Fei, Morales F, et al. In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator[J]. Physical Review Letters, 2021, 126: 054801. doi: 10.1103/PhysRevLett.126.054801
    [74]
    Nie Zan, Li Fei, Morales F, et al. Highly spin-polarized multi-GeV electron beams generated by single-species plasma photocathodes[J]. Physical Review Research, 2022, 4: 033015. doi: 10.1103/PhysRevResearch.4.033015
    [75]
    Han Qianqian, Geng Xuesong, Shen Baifei, et al. Ultra-fast polarization of a thin electron layer in the rotational standing-wave field driven by double ultra-intense laser pulses[J]. New Journal of Physics, 2022, 24: 063013. doi: 10.1088/1367-2630/ac740f
    [76]
    Accardi A, Albacete J L, Anselmino M, et al. Electron-ion collider: the next QCD frontier[J]. The European Physical Journal A, 2016, 52: 268. doi: 10.1140/epja/i2016-16268-9
    [77]
    An Xiangyan, Chen Min, Li Jianxing, et al. Mapping electromagnetic fields structure in plasma using a spin polarized electron beam[J]. Physics of Plasmas, 2019, 26: 123106. doi: 10.1063/1.5118710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (788) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return