Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229
Citation: Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229

Current situation and development trend analysis of femtosecond laser Betatron radiation source

doi: 10.11884/HPLPB202335.220229
  • Received Date: 2022-07-18
  • Rev Recd Date: 2022-09-13
  • Available Online: 2022-09-22
  • Publish Date: 2023-01-15
  • In the past decades, great progress has been made in laser wakefield acceleration of electron beam inspired by ultra-short intense lasers in plasma. The high-energy electron beam obtained by this method can be applied to the generation of the high-brightness and intense radiation sources, which have attracted extensive attention. In this paper, the basic principle and research status of Betatron radiation generated by laser wakefield acceleration are briefly introduced. The development trend of Betatron radiation is analyzed in combination with the X-ray application requirements. It is found that there is an urgent need to develop a new scheme of laser wakefield electron acceleration based on compact laser device to break through the limit of beam-loading effect on electron charge. By this means, one can generate large charge electron beam and high flux Betatron radiation source. Finally, a new scheme is briefly introduced to generate 10 nC high-energy electron beam and the photon number of Betatron radiation source reach $ 1.0\times {10}^{12} $/shot using hundreds of TW femtosecond laser by a joint team led by Professor Yan Xueqing at Peking Univesity.
  • loading
  • [1]
    Einstein A. On the special and general theory of relativity[J]. CPAE (English translation), 1917, 6: 247-420.
    [2]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [3]
    马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70:084102 doi: 10.7498/aps.70.20202115

    Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
    [4]
    彭梓洋, 曹正轩, 高营, 等. 液体薄膜靶在激光驱动辐射源和激光离子加速中的应用[J]. 强激光与粒子束, 2022, 34:081003 doi: 10.11884/HPLPB202234.220107

    Peng Ziyang, Cao Zhengxuan, Gao Ying, et al. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 081003 doi: 10.11884/HPLPB202234.220107
    [5]
    Albert F, Thomas A G R, Mangles S P D, et al. Laser wakefield accelerator based light sources: potential applications and requirements[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084015. doi: 10.1088/0741-3335/56/8/084015
    [6]
    Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [7]
    Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8]
    Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
    [9]
    Pukhov A, Kiselev S, Kostyukov I, et al. Relativistic laser-plasma bubbles: new sources of energetic particles and X-rays[J]. Nuclear Fusion, 2004, 44(12): S191-S201. doi: 10.1088/0029-5515/44/12/S09
    [10]
    Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 2004, 93: 135004. doi: 10.1103/PhysRevLett.93.135004
    [11]
    陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [12]
    Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
    [13]
    Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
    [14]
    Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 2002, 88: 135004. doi: 10.1103/PhysRevLett.88.135004
    [15]
    Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
    [16]
    Ta Phuoc K, Corde S, Shah R, et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation[J]. Physical Review Letters, 2006, 97: 225002. doi: 10.1103/PhysRevLett.97.225002
    [17]
    Corde S, Thaury C, Phuoc K T, et al. Mapping the X-ray emission region in a laser-plasma accelerator[J]. Physical Review Letters, 2011, 107: 215004. doi: 10.1103/PhysRevLett.107.215004
    [18]
    Fourmaux S, Corde S, Ta Phuoc K, et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation[J]. New Journal of Physics, 2011, 13: 033017. doi: 10.1088/1367-2630/13/3/033017
    [19]
    Schnell M, Sävert A, Landgraf B, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation[J]. Physical Review Letters, 2012, 108: 075001. doi: 10.1103/PhysRevLett.108.075001
    [20]
    Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
    [21]
    Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
    [22]
    Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [23]
    Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [24]
    Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 2018, 120: 134801. doi: 10.1103/PhysRevLett.120.134801
    [25]
    Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
    [26]
    Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets[J]. Physical Review E, 2020, 102: 053205. doi: 10.1103/PhysRevE.102.053205
    [27]
    Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
    [28]
    Dong Chuanfei, Zhao T Z, Behm K, et al. High flux femtosecond X-ray emission from the electron-hose instability in laser wakefield accelerators[J]. Physical Review Accelerators and Beams, 2018, 21: 041303. doi: 10.1103/PhysRevAccelBeams.21.041303
    [29]
    Li Yifei, Feng Jie, Tan Junhao, et al. Electron beam and betatron X-ray generation in a hybrid electron accelerator driven by high intensity picosecond laser pulses[J]. High Energy Density Physics, 2020, 37: 100859. doi: 10.1016/j.hedp.2020.100859
    [30]
    Tomkus V, Girdauskas V, Dudutis J, et al. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets[J]. Scientific Reports, 2020, 10: 16807. doi: 10.1038/s41598-020-73805-7
    [31]
    Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 2021, 118: 134102. doi: 10.1063/5.0042997
    [32]
    Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
    [33]
    Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
    [34]
    Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [35]
    Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
    [36]
    Rao B S, Cho M H, Kim H T, et al. Optical shaping of plasma cavity for controlled laser wakefield acceleration[J]. Physical Review Research, 2020, 2: 043319. doi: 10.1103/PhysRevResearch.2.043319
    [37]
    Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
    [38]
    Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
    [39]
    Mangles S P D, Genoud G, Kneip S, et al. Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront[J]. Applied Physics Letters, 2009, 95: 181106. doi: 10.1063/1.3258022
    [40]
    Thorn D B, Geddes C G R, Matlis N H, et al. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons[J]. Review of Scientific Instruments, 2010, 81: 10E325. doi: 10.1063/1.3479118
    [41]
    Genoud G, Cassou K, Wojda F, et al. Laser-plasma electron acceleration in dielectric capillary tubes[J]. Applied Physics B, 2011, 105(2): 309-316. doi: 10.1007/s00340-011-4639-4
    [42]
    Fourmaux S, Corde S, Phuoc K T, et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 2011, 36(13): 2426-2428. doi: 10.1364/OL.36.002426
    [43]
    Ju Jinchuan, Svensson K, Döpp A, et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes[J]. Applied Physics Letters, 2012, 100: 191106. doi: 10.1063/1.4712594
    [44]
    Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988. doi: 10.1038/ncomms2988
    [45]
    Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 2013, 4: 2421. doi: 10.1038/ncomms3421
    [46]
    Ho Y C, Hung T S, Jhou J G, et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure[J]. Physics of Plasmas, 2013, 20: 083104. doi: 10.1063/1.4817294
    [47]
    Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
    [48]
    Cole J M, Wood J C, Lopes N C, et al. Laser wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone[J]. Scientific Reports, 2015, 5: 13244. doi: 10.1038/srep13244
    [49]
    Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
    [50]
    Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [51]
    张秋菊, 盛政明, 张杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子[J]. 物理学报, 2004, 53(3):798-802 doi: 10.7498/aps.53.798

    Zhang Qiuju, Sheng Zhengming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma[J]. Acta Physica Sinica, 2004, 53(3): 798-802 doi: 10.7498/aps.53.798
    [52]
    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (1042) PDF downloads(208) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return