Volume 35 Issue 12
Nov.  2023
Turn off MathJax
Article Contents
Li Guangxiang, Wei Biao, Zhou Haijun, et al. A new method for calculating electron temperature in subbands of quantum cascade lasers[J]. High Power Laser and Particle Beams, 2023, 35: 121003. doi: 10.11884/HPLPB202335.220400
Citation: Li Guangxiang, Wei Biao, Zhou Haijun, et al. A new method for calculating electron temperature in subbands of quantum cascade lasers[J]. High Power Laser and Particle Beams, 2023, 35: 121003. doi: 10.11884/HPLPB202335.220400

A new method for calculating electron temperature in subbands of quantum cascade lasers

doi: 10.11884/HPLPB202335.220400
  • Received Date: 2023-08-28
  • Accepted Date: 2023-10-21
  • Rev Recd Date: 2023-10-21
  • Available Online: 2023-11-04
  • Publish Date: 2023-12-15
  • Quantum cascade laser is a newly developed important medium and far infrared laser source. In view of the important parameter of energy band electron temperature in the research and design of quantum cascade lasers, based on the relationship between electron kinetic energy and temperature and Fermi Golden Rule, this paper optimizes the rate equation so that it can calculate the subband electron temperature, thus achieving a more accurate solution of the rate equation. The calculation results show that compared with the existing kinetic energy balance method, this method describes the process of electron temperature change in the energy band in detail, and there is no need to use the optimization algorithm for a solution. When different initial temperatures are selected, the electron temperature of each energy level can be solved by self-consistent solution, and the convergence value with good consistency can be obtained. The results show that the deviation of the convergence value of electron temperature from the mean value is less than 8%, and the deviation of scattering rate is less than 1.6%. This study provides a new method for the design and research of quantum cascade lasers.
  • loading
  • [1]
    Faist J, Capasso F, Sivco D L, et al. Short wavelength ( λ~3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs[J]. Applied Physics Letters, 1998, 72(6): 680-682. doi: 10.1063/1.120843
    [2]
    Spitz O, Herdt A, Wu Jiagui, et al. Private communication with quantum cascade laser photonic chaos[J]. Nature Communications, 2021, 12: 3327. doi: 10.1038/s41467-021-23527-9
    [3]
    Rodriguez E, Mottaghizadeh A, Gacemi D, et al. Room-temperature, wide-band, quantum well infrared photodetector for microwave optical links at 4.9 μm wavelength[J]. ACS Photonics, 2018, 5(9): 3689-3694. doi: 10.1021/acsphotonics.8b00704
    [4]
    Irimajiri Y, Morohashi I, Kawakami A. Multifrequency heterodyne detection of molecules using a hot electron bolometer mixer pumped by two phase-locked THz-quantum cascade lasers[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 474-479. doi: 10.1109/TTHZ.2020.2990358
    [5]
    Dostál M, Suchánek J, Válek V, et al. Cantilever-enhanced photoacoustic detection and infrared spectroscopy of trace species produced by biomass burning[J]. Energy & Fuels, 2018, 32(10): 10163-10168.
    [6]
    Zhang Jianxiong, He Yong, Liang Shanshan, et al. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning[J]. Nature Communications, 2021, 12: 2730. doi: 10.1038/s41467-021-23025-y
    [7]
    Liu Xi, Qiao Zhi, Chai Yuming, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2015685118.
    [8]
    Li Z M S, Li Yingying, Ru Guoping. Simulation of quantum cascade lasers[J]. Journal of Applied Physics, 2011, 110: 093109. doi: 10.1063/1.3660207
    [9]
    Jirauschek C, Kubis T. Modeling techniques for quantum cascade lasers[J]. Applied Physics Reviews, 2014, 1: 011307. doi: 10.1063/1.4863665
    [10]
    孙远昆. 量子级联激光器的数值优化及其光电调制特性研究[D]. 重庆: 重庆大学, 2020: 26-28

    Sun Yuankun. Numerical optimization and photoelectric modulation characteristics of quantum cascade laser[D]. Chongqing: Chongqing University, 2020: 26-28
    [11]
    Slingerland P, Baird C, Giles R H. Application of multi-subband self-consistent energy balance method to terahertz quantum cascade lasers[J]. Semiconductor Science and Technology, 2012, 27: 065009. doi: 10.1088/0268-1242/27/6/065009
    [12]
    高星星. 几种粒子群优化算法及其应用研究[D]. 银川: 北方民族大学, 2020: 7-8

    Gao Xingxing. Several particle swarm optimization algorithms and their applications[D]. Yinchuan: North Minzu University, 2020: 7-8
    [13]
    Peng Chen, Sun Yuankun, Zhu Liguo, et al. Investigation of subband electron temperatures of quantum cascade lasers[J]. IEEE Photonics Journal, 2019, 11: 1500710.
    [14]
    Donovan K, Harrison P, Kelsall R W. Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: analysis of a GaAs/Al x Ga1- x As device[J]. Journal of Applied Physics, 2001, 89(6): 3084-3090. doi: 10.1063/1.1341216
    [15]
    Liu Zhijun, Wasserman D, Howard S S, et al. Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth[J]. IEEE Photonics Technology Letters, 2006, 18(12): 1347-1349. doi: 10.1109/LPT.2006.877006
    [16]
    祁昶, 石新智, 叶双莉, 等. THz量子级联激光器跃迁速率的数值求解及验证[J]. 光电子·激光, 2013, 24(12):2283-2288 doi: 10.16136/j.joel.2013.12.001

    Qi Chang, Shi Xinzhi, Ye Shuangli, et al. Numerical calculation and validation of transition rate for terahertz quantum cascade lasers[J]. Journal of Optoelectronics·Laser, 2013, 24(12): 2283-2288 doi: 10.16136/j.joel.2013.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (237) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return