Volume 35 Issue 12
Nov.  2023
Turn off MathJax
Article Contents
Xie Guoxing, Tan Fang, Zhang Yunlong, et al. Bending resistant large mode field area few-mode photonic crystal fiber[J]. High Power Laser and Particle Beams, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046
Citation: Xie Guoxing, Tan Fang, Zhang Yunlong, et al. Bending resistant large mode field area few-mode photonic crystal fiber[J]. High Power Laser and Particle Beams, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046

Bending resistant large mode field area few-mode photonic crystal fiber

doi: 10.11884/HPLPB202335.230046
  • Received Date: 2023-03-07
  • Accepted Date: 2023-10-28
  • Rev Recd Date: 2023-10-28
  • Available Online: 2023-11-06
  • Publish Date: 2023-12-15
  • To better solve the problem of signal crosstalk caused by mode coupling in the transmission of few mode optical fiber, the transmission characteristics of linear polarization (LP) mode and vector mode in weakly coupled photonic crystal fibers were studied. A double clad photonic crystal fiber has been designed that can transmit 20 vector modes. The effect of fiber parameters on the minimum effective refractive index difference between adjacent LP modes was simulated using finite element method to optimize the structural parameters, allowing the fiber to support stable transmission of six LP modes, which meets the weak coupling requirements. Finally, the effective mode field area and bending loss of different modes were analyzed. The results show that the minimum refractive index difference between the modes of the fiber is more than 1.12×10−4, indicating that the crosstalk between the modes is negligible. Effective mode field area of basic mode reaches 1040 μm2, where the corresponding nonlinear coefficient is as low as 1.07×10−10. In addition, at the bending radius of 38 mm, the maximum bending loss of each mode is only 5.65×10−8 dB/km. Compared with mainstream single-mode fiber and few mode single cladding, this structure has larger mode field area, lower inter mode crosstalk and stronger bending resistance, enriching the development ideas of space division multiplexing technology. It provides useful reference solutions for emerging services such as big data, virtual reality, network transmission capacity and optical fiber sensing.
  • loading
  • [1]
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [2]
    Velázquez-Benítez A M, Alvarado-Zacarias J C, Lopez-Galmiche G, et al. Six spatial modes photonic lanterns[C]//Proceedings of Optical Fiber Communication Conference. 2015: W3B. 3.
    [3]
    Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers[J]. Laser & Photonics Reviews, 2014, 8(5): L81-L85.
    [4]
    Benyahya K, Simonneau C, Ghazisaeidi A, et al. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection[J]. Journal of Lightwave Technology, 2018, 36(2): 355-360. doi: 10.1109/JLT.2017.2779825
    [5]
    Liu Huiyuan, Wen He, Zacarias J C A, et al. Demonstration of stable 3×10 Gb/s mode group-multiplexed transmission over a 20 km few-mode fiber[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition. 2018: 1-3.
    [6]
    Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17): 16576-16592. doi: 10.1364/OE.19.016576
    [7]
    Soma D, Wakayama Y, Beppu S, et al. 10.16-peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band[J]. Journal of Lightwave Technology, 2018, 36(6): 1362-1368.
    [8]
    李巨浩, 葛大伟, 高宇洋, 等. 基于弱耦合少模光纤的模分复用技术进展(特邀)[J]. 光通信研究, 2018(6):31-37

    Li Juhao, Ge Dawei, Gao Yuyang, et al. Recent progress in mode division multiplexing techniques based on weakly-coupled few-mode fiber[J]. Study on Optical Communications, 2018(6): 31-37
    [9]
    张金玉, 任芳, 张艺赢, 等. 面向传感应用的弱耦合偏芯少模光纤设计与分析[J]. 光学学报, 2020, 40:2406001

    Zhang Jinyu, Ren Fang, Zhang Yiying, et al. Design and analysis of weakly-coupled eccentric-core few-mode fiber for sensing application[J]. Acta Optica Sinica, 2020, 40: 2406001
    [10]
    雷晓, 任芳, 张艺赢, 等. 面向模分复用的沟槽-纳米孔辅助双包层弱耦合少模光纤[J]. 光学学报, 2021, 41:2306003

    Lei Xiao, Ren Fang, Zhang Yiying, et al. Trench-nanopore assisted double-clad weakly coupled few-mode fiber for mode division multiplexing[J]. Acta Optica Sinica, 2021, 41: 2306003
    [11]
    许鹏飞, 宋向阳, 周德春, 等. 铋酸盐玻璃高双折射大负色散微结构光纤设计[J]. 中国激光, 2021, 48:2406002 doi: 10.3788/CJL202148.2406002

    Xu Pengfei, Song Xiangyang, Zhou Dechun, et al. Bismuthate glass microstructure fiber with high birefringence and large negative dispersion[J]. Chinese Journal of Lasers, 2021, 48: 2406002 doi: 10.3788/CJL202148.2406002
    [12]
    Zheng Siwen, Ren Guobin, Lin Zhen, et al. A novel four-air-hole multicore dual-mode large-mode-area fiber: proposal and design[J]. Optical Fiber Technology, 2013, 19(5): 419-427. doi: 10.1016/j.yofte.2013.05.005
    [13]
    Sharma M, Dixit V, Konar S, et al. Endlessly single-mode photonic crystal fiber with high birefringence for sensing applications[J]. Modern Physics Letters B, 2020, 34: 2050077.
    [14]
    Yang S H, Jung E M, Han S K. Indoor location estimation based on LED visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013, 17(9): 1834-1837. doi: 10.1109/LCOMM.2013.070913.131120
    [15]
    李锦豪, 姜海明, 谢康. 光子晶体光纤制备工艺的发展与现状[J]. 科技创新与应用, 2021, 11(26):105-110,114

    Li Jinhao, Jiang Haiming, Xie Kang. Development and situation of preparation process of photonic crystal fiber[J]. Technology Innovation and Application, 2021, 11(26): 105-110,114
    [16]
    Gloge D. Weakly guiding fibers[J]. Applied Optics, 1971, 10(10): 2252-2258. doi: 10.1364/AO.10.002252
    [17]
    Ren Fang, Li Juhao, Hu Tao, et al. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX[J]. IEEE Photonics Journal, 2015, 7: 7903509.
    [18]
    Olshansky R. Mode coupling effects in graded-index optical fibers[J]. Applied Optics, 1975, 14(4): 935-945. doi: 10.1364/AO.14.000935
    [19]
    Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2011, 24(5): 344-346.
    [20]
    Rahman M S, Haque M, Kim K D. High precision indoor positioning using lighting LED and image sensor[C]//Proceedings of the 14th International Conference on Computer and Information Technology. 2011: 309-314.
    [21]
    Haxha S, Ademgil H. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Optics Communications, 2008, 281(2): 278-286. doi: 10.1016/j.optcom.2007.09.041
    [22]
    Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963. doi: 10.1364/OL.22.000961
    [23]
    马丽伶, 李曙光, 李建设, 等. 一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤[J]. 物理学报, 2022, 71:104206 doi: 10.7498/aps.71.20212221

    Ma Liling, Li Shuguang, Li Jianshe, et al. A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance[J]. Acta Physica Sinica, 2022, 71: 104206 doi: 10.7498/aps.71.20212221
    [24]
    郑斯文, 刘亚卓, 罗晓玲, 等. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析[J]. 物理学报, 2021, 70:224214 doi: 10.7498/aps.70.20210410

    Zheng Siwen, Liu Yazhuo, Luo Xiaoling, et al. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss[J]. Acta Physica Sinica, 2021, 70: 224214 doi: 10.7498/aps.70.20210410
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (262) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return