Volume 35 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Wang Yancheng, Cao Zongwei, Sun Xiangyang, et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079
Citation: Wang Yancheng, Cao Zongwei, Sun Xiangyang, et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079

Study of photo-transmutation induced by laser wakefield accelerated electrons

doi: 10.11884/HPLPB202335.230079
  • Received Date: 2022-04-07
  • Accepted Date: 2023-04-25
  • Rev Recd Date: 2023-05-15
  • Available Online: 2023-05-31
  • Publish Date: 2023-09-15
  • Photo-transmutation is an important path to handle long-lived fission products. In this research work, an optimization scheme of photo-transmutation induced by Laser WakeField Acceleration (LWFA) driven electrons is proposed. Numerical simulations of photo-transmutation of 135Cs by this scheme are performed. Monte Carlo simulations show that with increasing electron energy, transmutation yield gradually saturates. The transmutation efficiency per unit electron energy has a peak near 40 MeV, with half-maximum energy of 20−120 MeV. To enhance electron charge within the half-maximum energy range and optimize transmutation yield, PIC simulation was used to study the transmission process of ultrashort and ultra-intense lasers in gas plasma. The results show that as plasma density decrease, the energy of electrons gradually increase while their charge are gradually reduced. Moreover, circularly polarized lasers exhibit higher electron energy and charge than linearly polarized ones. Through adjusting the plasma density and laser polarization, it is found that there is an optimal value for transmutation yield under the conditions of circular polarization and specific density. The scheme is expected to promote the studies of nuclide transmutation in a tabletop ultra-intense and ultra-short laser device with high repetition rate, as well as the potential applications in medicine and nuclear-waste management.
  • loading
  • [1]
    Kailas S, Hemalatha M, Saxena A. Nuclear transmutation strategies for management of long-lived fission products[J]. Pramana, 2015, 85(3): 517-523. doi: 10.1007/s12043-015-1063-z
    [2]
    Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
    [3]
    Nakamura S, Furutaka K, Wada H, et al. Measurement of the thermal neutron capture cross section and the resonance integral of the 90Sr(n, γ)91Sr reaction[J]. Journal of Nuclear Science and Technology, 2001, 38(12): 1029-1034. doi: 10.1080/18811248.2001.9715132
    [4]
    Sadighi S K, Sadighi-Bonabi R. The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultrantense lasers[J]. Laser and Particle Beams, 2010, 28(2): 269-276. doi: 10.1017/S0263034610000145
    [5]
    Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
    [6]
    Mourou G, Umstadter D. Development and applications of compact high-intensity lasers[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 2315-2325. doi: 10.1063/1.860202
    [7]
    Amiranoff F, Baton S, Bernard D, et al. Observation of laser wakefield acceleration of electrons[J]. Physical Review Letters, 1998, 81(5): 995-998. doi: 10.1103/PhysRevLett.81.995
    [8]
    Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
    [9]
    Shkolnikov P L, Kaplan A E, Pukhov A, et al. Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser[J]. Applied Physics Letters, 1997, 71(24): 3471-3473. doi: 10.1063/1.120362
    [10]
    Magill J, Schwoerer H, Ewald F, et al. Laser transmutation of iodine-129[J]. Applied Physics B, 2003, 77(4): 387-390. doi: 10.1007/s00340-003-1306-4
    [11]
    Ledingham K W D, Magill J, McKenna P, et al. Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product[J]. Journal of Physics D: Applied Physics, 2003, 36(18): L79-L82. doi: 10.1088/0022-3727/36/18/L01
    [12]
    Tajima T, Dawson J M. An electron accelerator using a laser[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 4188-4189. doi: 10.1109/TNS.1979.4330739
    [13]
    Malka V, Fritzler S, Lefebvre E, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298(5598): 1596-1600. doi: 10.1126/science.1076782
    [14]
    Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541. doi: 10.1038/nature02900
    [15]
    Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
    [16]
    Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [17]
    Wang X L, Xu Z Y, Luo W, et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator[J]. Physics of Plasmas, 2017, 24: 093105. doi: 10.1063/1.4998470
    [18]
    Kim H T, Pathak V B, Hojbota C I, et al Multi-GeV laser wakefield electron acceleration with PW lasers[J]. Applied Sciences, 2021, 11: 5831.
    [19]
    Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [20]
    Hosokai T, Kinoshita K, Zhidkov A, et al. Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration[J]. Physical Review Letters, 2006, 97: 075004. doi: 10.1103/PhysRevLett.97.075004
    [21]
    Hur M S, Gupta D N, Suk H. Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration[J]. Physics Letters A, 2008, 372(15): 2684-2687. doi: 10.1016/j.physleta.2007.12.045
    [22]
    Vieira J, Martins S F, Pathak V B, et al. Magnetic control of particle injection in plasma based accelerators[J]. Physical Review Letters, 2011, 106: 225001. doi: 10.1103/PhysRevLett.106.225001
    [23]
    Liu Hong, He Xiantu, Chen S G. Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields[J]. Physical Review E, 2004, 69: 066409. doi: 10.1103/PhysRevE.69.066409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (474) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return