Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Gao Lei, Hao Jianhong, Zhang Fang, et al. Study on law of two-dimensional sheet relativistic electron beam transport to target[J]. High Power Laser and Particle Beams, 2024, 36: 043032. doi: 10.11884/HPLPB202436.230101
Citation: Gao Lei, Hao Jianhong, Zhang Fang, et al. Study on law of two-dimensional sheet relativistic electron beam transport to target[J]. High Power Laser and Particle Beams, 2024, 36: 043032. doi: 10.11884/HPLPB202436.230101

Study on law of two-dimensional sheet relativistic electron beam transport to target

doi: 10.11884/HPLPB202436.230101
  • Received Date: 2023-04-25
  • Accepted Date: 2023-10-30
  • Rev Recd Date: 2023-10-30
  • Available Online: 2023-11-15
  • Publish Date: 2024-02-29
  • The relativistic electron beam can hit the target with a high injection rate under the ideal paramagnetic environment, but in reality, due to the influence of the environment, the transmission direction of the relativistic electron beam may deviate from the geomagnetic field at a small angle, thus the Larmor precession will be generated by the action of the geomagnetic field, which affects the target aiming of the electron beam as well as the amount of the injection to the target. In this paper, based on the two-dimensional sheet relativistic electron beam, taking the paramagnetic relativistic electron beam and the beam with 3° angle deviation from the magnetic field as two cases, through the simulation of the propagation of the bunches, we analyze and study the effect of different transmission distance on the bunch to target rate in paramagnetic environment, as well as that of the 3° deviation from the magnetic field on the amount of injection in the propagation process, thus to provide data for reference in the prediction of relativistic electron beam-to-target rate and target aiming.
  • loading
  • [1]
    Bonnal C, Ruault J M, Desjean M C. Active debris removal: recent progress and current trends[J]. Acta Astronautica, 2013, 85: 51-60. doi: 10.1016/j.actaastro.2012.11.009
    [2]
    Hou Chongyuan, Yang Yuan, Yang Yikang, et al. Electromagnetic-launch-based method for cost-efficient space debris removal[J]. Open Astronomy, 2020, 29(1): 94-106. doi: 10.1515/astro-2020-0016
    [3]
    Fang Yingwu, Pan Jun, Luo Yijia, et al. Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO[J]. Acta Astronautica, 2019, 165: 184-190. doi: 10.1016/j.actaastro.2019.09.010
    [4]
    Phipps C. Lisk-Broom: a laser concept for clearing space debris[J]. Laser and Particle Beams, 1995, 13(1): 33-41. doi: 10.1017/S0263034600008831
    [5]
    Romero-Calvo Á, Cano-Gómez G, Schaub H. Simulation and uncertainty quantification of electron beams in active spacecraft charging scenarios[J]. Journal of Spacecraft and Rockets, 2022, 59(3): 739-750. doi: 10.2514/1.A35190
    [6]
    戴宏毅, 王同权, 肖亚斌. 带电粒子束自生力对束流扩散的影响[J]. 国防科技大学学报, 2000, 22(4):41-44

    Dai Hongyi, Wang Tongquan, Xiao Yabin. Research of effect of self-generated space charge force of charged particle beams on its radical spread[J]. Journal of National University of Defense Technology, 2000, 22(4): 41-44
    [7]
    张树发. 带电粒子束传输中发散范围的计算[J]. 国防科技大学学报, 1982, 4(2):43-54

    Zhang Shufa. The calculation of diffusive region of charged partical beam in transmiting[J]. Journal of National University of Defense Technology, 1982, 4(2): 43-54
    [8]
    戴宏毅, 肖亚斌, 王同权, 等. 带电粒子束在真空中传输时的扩散研究[J]. 湖南大学学报(自然科学版), 2001, 28(4):6-10

    Dai Hongyi, Xiao Yabin, Wang Tongquan, et al. Study of spread of propagation of charged particle beams in vacuum[J]. Journal of Hunan University (Natural Science Edition), 2001, 28(4): 6-10
    [9]
    胡星. 高能强流带电粒子束在介质中的传输研究[D]. 长沙: 国防科技大学, 2004

    Hu Xing. Research on propagation of high energy charged particle beams in media materials[D]. Changsha: National University of Defense Technology, 2004
    [10]
    Hao Jianhong, Wang Xi, Zhang Fang, et al. The influence of magnetic field on the beam quality of relativistic electron beam long-range propagation in near-Earth environment[J]. Plasma Science and Technology, 2021, 23: 115301. doi: 10.1088/2058-6272/ac183a
    [11]
    焦鹿怀, 葛亚松, 张援农, 等. 地磁场中电子束结构运动的横向约束与周期振荡[J]. 地球物理学报, 2022, 65(10):3691-3703

    Jiao Luhuai, Ge Yasong, Zhang Yuannong, et al. Transverse confinement and periodic oscillations of electron beam structures traveling in the Earth's magnetic field[J]. Chinese Journal of Geophysics, 2022, 65(10): 3691-3703
    [12]
    Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Influence of geomagnetic field on the long-range propagation of relativistic electron beam in the atmosphere[J]. IEEE Transactions on Plasma Science, 2020, 48(11): 3871-3876. doi: 10.1109/TPS.2020.3026088
    [13]
    Miller R B. An introduction to the physics of intense charged particle beam[M]. New York: Springer, 1982: 1-359.
    [14]
    Khazanov G V, Liemohn M W, Krivorutsky E N, et al. Relativistic electron beam propagation in the Earth’s magnetosphere[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A12): 28587-28599. doi: 10.1029/1999JA900414
    [15]
    Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the Earth’s atmosphere: modeling results[J]. Geophysical Research Letters, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [16]
    Zhang Shichang, Elgin J. Stabilizing effect of the electron-beam self-fields on the phase-space trajectory in a self-amplified spontaneous emission free-electron laser operating in ultraviolet and X-ray spectral ranges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37(4): 875-883.
    [17]
    White A E, Lewis H G. An adaptive strategy for active debris removal[J]. Advances in Space Research, 2014, 53(8): 1195-1206. doi: 10.1016/j.asr.2014.01.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (183) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return