Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Yang Hao, Huang Nuoci, Liu Xingchen, et al. Critical field strength estimation for microwave pulse atmospheric breakdown[J]. High Power Laser and Particle Beams, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248
Citation: Yang Hao, Huang Nuoci, Liu Xingchen, et al. Critical field strength estimation for microwave pulse atmospheric breakdown[J]. High Power Laser and Particle Beams, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248

Critical field strength estimation for microwave pulse atmospheric breakdown

doi: 10.11884/HPLPB202436.230248
  • Received Date: 2023-08-01
  • Accepted Date: 2023-10-31
  • Rev Recd Date: 2023-11-07
  • Available Online: 2023-11-14
  • Publish Date: 2024-02-29
  • In response to the possible breakdown phenomenon of high-power microwave in atmospheric transmission, our study focuses on the first breakdown delay pulse number in pulse sequences. It is found that it is closely related to seed electrons, pulse breakdown probability, and microwave field strength. Microwave field strength can indirectly affect the pulse breakdown probability and delay pulse number through seed electrons. A method is proposed to estimate the critical field strength of microwave breakdown using the number of delayed pulses, and the microwave critical field strength is defined as the breakdown threshold when the probability of pulse breakdown is greater than a certain value. In this paper, the estimation formula of pulse impulse breakdown probability is derived, and the performance of the estimator is analyzed. Then, the experimental verification is carried out using the S band microwave atmospheric breakdown simulation device. The experimental results show that, within a certain range, the number of pulse delays for repetitive frequency microwave pulse breakdown is only inversely proportional to the seed electron generation rate and pulse width, and can be used to estimate the probability of pulse breakdown, thereby giving the critical field strength for breakdown.
  • loading
  • [1]
    Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 刘国治, 周传明, 译. 北京: 清华大学出版社, 2005: 154-158

    Barker R J, Schamiloglu E. High power microwave source and technology[M]. Liu Guozhi, Zhou Chuanming, trans. Beijing: Tsinghua University Press, 2005: 154-158
    [2]
    杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216 doi: 10.11884/HPLPB201931.190151

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [3]
    Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [4]
    Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
    [5]
    Nusinovich G S, Pu Ruifeng, Antonsen T M Jr, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
    [6]
    Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
    [7]
    Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
    [8]
    王华杰, 马喆, 龚少博, 等. 高功率微波与大气等离子体相互作用研究[J]. 核聚变与等离子体物理, 2022, 42(s1): 170-174

    Wang Huajie, Ma Zhe, Gong Shaobo, et al. Study on the interaction between high power microwave and atmospheric plasma. Nuclear Fusion and Plasma Physics, 2022, 42(s1): 170-174
    [9]
    ShimamuraK , YamasakiJ , Miyawaki K, et al. Propagation of microwave breakdown in argon induced by a 28 GHz gyrotron beam[J]. Physics of Plasmas, 2021, 28: 033505.
    [10]
    Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
    [11]
    Li Shuguang, Xu Da, Zhang Jie, et al. A new three-level fourth-order compact finite difference scheme for the extended Fisher-Kolmogorov equation[J]. Applied Numerical Mathematics, 2022, 178: 41-51. doi: 10.1016/j.apnum.2022.03.010
    [12]
    杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002 doi: 10.11884/HPLPB201931.180350

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (157) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return