Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Qian Pingtong, Zhang Xiaobo, Huang Mao, et al. Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma[J]. High Power Laser and Particle Beams, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136
Citation: Qian Pingtong, Zhang Xiaobo, Huang Mao, et al. Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma[J]. High Power Laser and Particle Beams, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136

Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma

doi: 10.11884/HPLPB202436.230136
  • Received Date: 2023-04-16
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-23
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • Based on the electromagnetic fluid model, the effects of electron temperature and plasma density on the nonlinear frequency shift of electron acoustic wave in a relativistic hot plasma are investigated. The nonlinear frequency shift equation of electron acoustic wave is obtained by using the nonlinear frequency shift theory and perturbation method. The results show that the plasma density, the first harmonic amplitude and the electron temperature are the main factors that determine the nonlinear frequency shift of electron acoustic wave in relativistic hot plasma. For weak excitation, the nonlinear frequency shift increases with the increase of electron temperature and the first harmonic amplitude, and the plasma density inhibits the nonlinear frequency shift. The impact of electron temperature and the plasma density on nonlinear frequency shift shows a strong nonlinear character. The results provide a theoretical evidence for understanding the high power laser-plasma interaction and the generation of harmonics.
  • loading
  • [1]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2]
    Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62(3): 44-49. doi: 10.1063/1.3099645
    [3]
    Shen Baifei, Yu M Y. High-intensity laser-field amplification between two foils[J]. Phys Rev Lett, 2002, 89: 275004. doi: 10.1103/PhysRevLett.89.275004
    [4]
    Yu Jinqing, Hu Ronghao, Gong Zheng, et al. The generation of collimated γ -ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Appl Phys Lett, 2018, 112: 204103.
    [5]
    杨柏谦, 张继彦, 韩申生, 等. Al激光等离子体电子密度的空间分辨诊断[J]. 强激光与粒子束, 2005, 17(5):703-706

    Yang Boqian, Zhang Jiyan, Han Shensheng, et al. Space-resolved diagnosis for the electron density of laser-produced aluminum plasma[J]. High Power Laser and Particle Beams, 2005, 17(5): 703-706
    [6]
    陈华英, 刘三秋, 李晓卿. 线偏振激光在磁化等离子体中的调制不稳定性[J]. 强激光与粒子束, 2008, 20(12):2022-2026

    Chen Huaying, Liu Sanqiu, Li Xiaoqing. Modulation instability of linearly polarized laser beam in magnetized plasma[J]. High Power Laser and Particle Beams, 2008, 20(12): 2022-2026
    [7]
    Chen Min, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerator[J]. Phys Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
    [8]
    Luo Ji, Chen Min, Zeng Ming, et al. A compact tunable polarized X-ray source based on laser-plasma helical undulators[J]. Sci Rep, 2016, 6: 29101. doi: 10.1038/srep29101
    [9]
    Liu Maochuan, Weng Siming, Wang H C, et al. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers[J]. Phys Plasmas, 2018, 25: 063103. doi: 10.1063/1.5033991
    [10]
    Holkundkar A R, Brodin G. Transition from wakefield generation to soliton formation[J]. Phys Rev E, 2018, 97: 043204. doi: 10.1103/PhysRevE.97.043204
    [11]
    Qian Pingtong, Zhang Xiaobo, Jiao Chen, et al. The nonlinear interaction of relativistic laser and hot plasma[J]. Phys Plasmas, 2023, 30: 012106. doi: 10.1063/5.0128595
    [12]
    Mackinnon A J, Sentoku Y, Patel P K, et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses[J]. Phys Rev Lett, 2002, 88: 215006. doi: 10.1103/PhysRevLett.88.215006
    [13]
    Xu Zhiyi, Xiao Chaofan, Lu Haiyang, et al. New injection and acceleration scheme of positrons in the laser-plasma bubble regime[J]. Phys Rev Accel Beams, 2020, 23: 091301. doi: 10.1103/PhysRevAccelBeams.23.091301
    [14]
    Sodha M S, Sharma J K, Tewari D P, et al. Plasma wave and second harmonic generation[J]. Plasmas Phys, 1978, 20(8): 825-835. doi: 10.1088/0032-1028/20/8/007
    [15]
    Quéré F, Thaury C, Geindre J P, et al. Phase properties of laser high-order harmonics generated on plasma mirrors[J]. Phys Rev Lett, 2008, 100: 095004. doi: 10.1103/PhysRevLett.100.095004
    [16]
    Cohen B I, Lasinski B F, Langdon A B, et al. Resonantly excited nonlinear ion waves[J]. Phys Plasmas, 1997, 4(4): 956-977. doi: 10.1063/1.872187
    [17]
    Froula D H, Divol L, Braun D G, et al. Stimulated Brillouin scattering in the saturated regime[J]. Phys Plasmas, 2003, 10(5): 1846-1853. doi: 10.1063/1.1542887
    [18]
    Divol L, Berger R L, Cohen B I, et al. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas[J]. Phys Plasmas, 2003, 10(5): 1822-1828. doi: 10.1063/1.1557055
    [19]
    Cohen B I, Divol L, Langdon A B, et al. Saturation of stimulated Brillouin backscattering in two-dimensional kinetic ion simulations[J]. Phys Plasmas, 2005, 12: 052703. doi: 10.1063/1.1878792
    [20]
    Feng Qingsong, Xiao Chengzhuo, Wang Qing, et al. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region[J]. Phys Rev E, 2016, 94: 023205. doi: 10.1103/PhysRevE.94.023205
    [21]
    Berger R L, Brunner S, Chapman T, et al. Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves[J]. Phys Plasmas, 2013, 20: 032107. doi: 10.1063/1.4794346
    [22]
    Riconda C, Heron A, Pesme D, et al. Electron kinetic effects in the nonlinear evolution of a driven ion-acoustic wave[J]. Phys Rev Lett, 2005, 94: 055003. doi: 10.1103/PhysRevLett.94.055003
    [23]
    Riconda C, Heron A, Pesme D, et al. Electron and ion kinetic effects in the saturation of a driven ion acoustic wave[J]. Phys Plasmas, 2005, 12: 112308. doi: 10.1063/1.2132272
    [24]
    Pesme D, Riconda C, Tikhonchuk V T. Parametric instability of a driven ion-acoustic wave[J]. Phys Plasmas, 2005, 12: 092101. doi: 10.1063/1.2000567
    [25]
    Rose H A. Langmuir wave self-focusing versus decay instability[J]. Phys Plasmas, 2005, 12: 012318. doi: 10.1063/1.1829066
    [26]
    Banks J W, Berger R L, Brunner S, et al. Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss[J]. Phys Plasmas, 2011, 18: 052102. doi: 10.1063/1.3577784
    [27]
    Akhiezer A I, Polovin R V. Theory of wave motion of an electron plasma[J]. Sov Phys JETP, 1956, 3: 696-705.
    [28]
    Bertrand P, Baumann G, Feix M R. Frequency shift of non linear electron plasma oscillation[J]. Phys Lett A, 1969, 29(9): 489-490. doi: 10.1016/0375-9601(69)90390-9
    [29]
    Dewar R L, Lindl J. Nonlinear frequency shift of a plasma wave[J]. Phys Fluids, 1972, 15(5): 820-824. doi: 10.1063/1.1693990
    [30]
    Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Phys Fluids, 1974, 17(8): 1617-1625. doi: 10.1063/1.1694942
    [31]
    Albright B J, Yin Lilan, Bowers K J, et al. Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay[J]. Phys Plasmas, 2016, 23: 032703. doi: 10.1063/1.4943102
    [32]
    Cohen B I, Lasinski B F, Langdon A B, et al. Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma[J]. Phys Plasmas, 1998, 5(9): 3408-3415. doi: 10.1063/1.873055
    [33]
    张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12):3091-3097 doi: 10.3788/HPLPB20132512.3091

    Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser Part Beams, 2013, 25(12): 3091-3097 doi: 10.3788/HPLPB20132512.3091
    [34]
    袁强, 胡东霞, 张鑫, 等. 激光聚变冲击点火物理特性研究[J]. 物理学报, 2011, 60:015202 doi: 10.7498/aps.60.015202

    Yuan Qiang, Hu Dongxia, Zhang Xin, et al. Study on the mechanism of shock ignition in laser fusion[J]. Acta Physica Sinica, 2011, 60: 015202 doi: 10.7498/aps.60.015202
    [35]
    唐熊忻, 邱基斯, 樊仲维, 等. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd, Y: CaF2激光放大器的实验研究[J]. 物理学报, 2016, 65:204206 doi: 10.7498/aps.65.204206

    Tang Xiongxin, Qiu Jisi, Fan Zhongwei, et al. Experimental study of diode-pumped Nd, Y: CaF2 amplifier for inertial confinement fusion laser driver[J]. Acta Physica Sinica, 2016, 65: 204206 doi: 10.7498/aps.65.204206
    [36]
    Winjum B J, Fahlen J, Mori W B. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave[J]. Phys Plasmas, 2007, 14: 102104. doi: 10.1063/1.2790385
    [37]
    O’NEIL T. Collisionless damping of nonlinear plasma oscillations[J]. Phys Fluids, 1965, 8(12): 2255-2262. doi: 10.1063/1.1761193
    [38]
    Saxena V, Kourakis I, Sanchez-Arriaga G, et al. Interaction of spatially overlapping standing electromagnetic solitons in plasmas[J]. Phys Lett A, 2013, 377(6): 473-477. doi: 10.1016/j.physleta.2012.12.010
    [39]
    Saxena V, Kourakis I. Superluminal electromagnetic solitary waves in electron-positron plasmas[J]. Europhys Lett, 2012, 100: 15002. doi: 10.1209/0295-5075/100/15002
    [40]
    Siminos E, Sánchez-Arriaga G, Saxena V, et al. Modeling relativistic soliton interactions in overdense plasmas: a perturbed nonlinear Schrödinger equation framework[J]. Phys Rev E, 2014, 90: 063104. doi: 10.1103/PhysRevE.90.063104
    [41]
    Mahajan S M. Temperature-transformed “minimal coupling”: magnetofluid unification[J]. Phys Rev Lett, 2003, 90: 035001. doi: 10.1103/PhysRevLett.90.035001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (271) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return