Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Huang Qingqing, Yang Zhen, Luo Tao, et al. Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269
Citation: Huang Qingqing, Yang Zhen, Luo Tao, et al. Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269

Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources

doi: 10.11884/HPLPB202436.230269
  • Received Date: 2023-08-15
  • Accepted Date: 2023-12-12
  • Rev Recd Date: 2023-12-12
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • The static deformation and adjustment precision of the storage ring's mechanical support determine the positioning accuracy of each physical component. The dynamic response characteristics of these components affect the stability of the beam current. Therefore, mechanical support serves as the installation foundation for all physical components, ensuring the correct installation and operation of magnets, vacuum chambers, beam diagnostics, and other elements, thereby enabling them to exhibit their corresponding physical performance. Therefore, designing mechanical support with high stability holds extraordinary significance. Taking the Shenzhen Innovation Light source Facility (SILF) as an example, this article utilizes SolidWorks and Ansys software to design and optimize the magnets support of the storage ring. The process of mechanical support design and optimization simulation for the storage ring is elaborated in detail. The final design is assembled with the magnet model, and the overall support is simulated and validated as closely as possible to the real operating conditions to ensure compliance with the parameter requirements of the physical design.
  • loading
  • [1]
    焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [2]
    张令翊, 庄杰佳, 赵夔, 等. 第四代光源[J]. 强激光与粒子束, 2001, 13(1):51-55

    Zhang Lingyi, Zhuang Jiejia, Zhao Kui, et al. Fourth-generation light source[J]. High Power Laser and Particle Beams, 2001, 13(1): 51-55
    [3]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4]
    殷立新. 光源加速器机械工程设计与实施[R]. 上海: 上海光源, 2008

    Yin Lixin. Mechanical engineering design and implementation of SSR[R]. 2008
    [5]
    Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(Pt 6): 1611-1618.
    [6]
    Cianciosi F, Brochard T, Marion P, et al. The girder system for the new ESRF storage ring[C]//Proceedings of MEDSI 2016. 2016: 147-151.
    [7]
    Martensson N, Eriksson M. The saga of MAX IV, the first multi-bend achromat synchrotron light source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 97-104.
    [8]
    王梓豪. HEPS-TF磁铁支架稳定性研究[D]. 北京: 中国科学院大学, 2019: 16-18

    Wang Zihao. Study on the stability of HEPS-TF magnet girder[D]. Beijing: University of Chinese Academy of Sciences, 2019: 16-18
    [9]
    何兴, 申雨, 马俊达, 等. 超高层建筑的巨型异形钢柱柱底灌浆施工技术[J]. 建筑施工, 2017, 39(1):40-41 doi: 10.14144/j.cnki.jzsg.2017.01.014

    He Xing, Shen Yu, Ma Junda, et al. Construction technology of column bottom grouting for huge special-shaped steel column of super tall building[J]. Building Construction, 2017, 39(1): 40-41 doi: 10.14144/j.cnki.jzsg.2017.01.014
    [10]
    杜开福. 用高强无收缩灌浆料替代型钢柱底二次砼浇灌施工应用[J]. 建筑工程技术与设计, 2017(19):1755-1756

    Du Kaifu. Construction of two times concrete pouring with high-strength non-shrinkage grouting instead of steel column bottom[J]. Architecture Engineering Technology and Design, 2017(19): 1755-1756
    [11]
    李春华, 王梓豪, 周宁闯, 等. 先进光源磁铁支撑基座稳定性的实验研究[J]. 强激光与粒子束, 2021, 33:034003 doi: 10.11884/HPLPB202133.200201

    Li Chunhua, Wang Zihao, Zhou Ningchuang, et al. Experimental study on magnet support plinths of advanced light source[J]. High Power Laser and Particle Beams, 2021, 33: 034003 doi: 10.11884/HPLPB202133.200201
    [12]
    苗玉刚, 赵峰, 何斌. 基于SolidWorks Simulation的工装压板有限元分析及优化设计[J]. 煤矿机械, 2015, 36(11):192-194

    Miao Yugang, Zhao Feng, He Bin. Finite element analysis and optimization design of tooling plate based on SolidWorks simulation[J]. Coal Mine Machinery, 2015, 36(11): 192-194
    [13]
    DS SolidWorks公司, 陈超祥, 胡其登. SolidWorks® Simulation高级教程[M]. 杭州新迪数字工程系统有限公司, 译. 5版. 北京: 机械工业出版社, 2018: 160-174

    DS SolidWorks, Chen Chaoxiang, Hu Qideng. SolidWorks professional[M]. Hangzhou Xindi Digital Engineering System Co. , Ltd, trans. 5th ed. Beijing: China Machine Press, 2018: 160-174
    [14]
    张海艇, 何晓业, 王巍, 等. 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析[J]. 强激光与粒子束, 2020, 32:084003 doi: 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析

    Zhang Haiting, He Xiaoye, Wang Wei, et al. Design and simulation analysis of mechanical system of reference network for alignment based on Hefei Advanced Lightsource Facility[J]. High Power Laser and Particle Beams, 2020, 32: 084003 doi: 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析
    [15]
    Jankovics D, Gohari H, Tayefeh M, et al. Developing topology optimization with additive manufacturing constraints in ANSYS®[J]. IFAC-PapersOnLine, 2018, 51(11): 1359-1364. doi: 10.1016/j.ifacol.2018.08.340
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article views (275) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return