Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Gong Hongzhou, Zhang Jiande, Yuan Chengwei, et al. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams, 2024, 36: 013009. doi: 10.11884/HPLPB202436.230139
Citation: Gong Hongzhou, Zhang Jiande, Yuan Chengwei, et al. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams, 2024, 36: 013009. doi: 10.11884/HPLPB202436.230139

A tightly coupled dipole array antenna with high power and broadband

doi: 10.11884/HPLPB202436.230139
  • Received Date: 2023-05-18
  • Accepted Date: 2023-06-19
  • Rev Recd Date: 2023-06-19
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • A novel tightly coupled dipole array antenna with high power and broadband is proposed in this paper. On the basis of conventional tightly coupled dipole array antennas, and by adopting an all-metal structure design, an integrated design of antenna matching layer and sealing layer, and a method of adjusting the antenna structure, a high-power and broadband performance of such an array antenna is obtained. The simulation results show that the standing wave ratio of the array antenna is less than 2 at the broadside in the range of 0.8-4.0 GHz. And the power capacity of an element antenna reaches 0.12 MW within the size of 16 mm × 32 mm in the space full of SF6 at one atmospheric pressure. Moreover, the power capacity of the 10×10 array antenna composed of 100 elements can reach 12 MW within the size of 320 mm × 640 mm in the space full of SF6 at one atmospheric pressure. In addition, the array antenna can achieve a wide-angle scan of 45°. The proposed array antenna provides a solution for high-power microwave broadband antennas to achieve a broadband, large-angle scanning, compact, miniaturized, and low-profile performance.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [2]
    楚旭, 王朗宁, 朱效庆, 等. 基于光导半导体的MHz高重频可调谐脉冲产生技术研究[J]. 强激光与粒子束, 2022, 34:075006 doi: 10.11884/HPLPB202234.210569

    Chu Xu, Wang Langning, Zhu Xiaoqing, et al. Research on tunable pulse generation with MHz repetition rate based on compensated 4H-SiC photoconductive semiconductor[J]. High Power Laser and Particle Beams, 2022, 34: 075006 doi: 10.11884/HPLPB202234.210569
    [3]
    Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [4]
    Prather W D, Baum C E, Torres R J, et al. Survey of worldwide high-power wideband capabilities[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 335-344. doi: 10.1109/TEMC.2004.831826
    [5]
    Sabath F, Nitsch D, Jung M, et al. Design and setup of a short pulse simulator for susceptibility investigations[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1722-1727. doi: 10.1109/TPS.2002.805331
    [6]
    Ryu J, Kim K, Lim T H, et al. Integrated-antenna-source of directive peak electric-field patterns for high-power ultrawideband parabolic reflector system[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 727-731. doi: 10.1109/LAWP.2019.2901839
    [7]
    Wang Shaofei, Xie Yanzhao, Qiu Yangxin. A kind of tightly coupled array with nonuniform short-circuited branches for the radiation of UWB pulses[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2259-2267. doi: 10.1109/TAP.2023.3240624
    [8]
    Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [9]
    LI Linfeng, Yan Jiebang, O'Neill C, et al. Coplanar side-fed tightly coupled ultra-wideband array for polar ice sounding[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4331-4341. doi: 10.1109/TAP.2021.3138544
    [10]
    Tzanidis I, Sertel K, Volakis J L. UWB low-profile tightly coupled dipole array with integrated balun and edge terminations[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3017-3025. doi: 10.1109/TAP.2013.2250232
    [11]
    Munk B A. Finite antenna arrays and FSS[M]. Hoboken: John Wiley & Sons, 2003.
    [12]
    Wheeler H A. The radiation resistance of an antenna in an infinite array or waveguide[J]. Proceedings of the IRE, 1948, 36(4): 478-487. doi: 10.1109/JRPROC.1948.229650
    [13]
    Quan Xin, Cao Zhenxin, Zhou Huaimin, et al. Common-mode resonance suppressing surface for tightly coupled array[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 12358-12363. doi: 10.1109/TAP.2022.3209235
    [14]
    Zhang Zhechen, Wang Bingjun, Yang Feng, et al. Conical conformal tightly coupled dipole arrays co-designed with low-scattering characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 12352-12357. doi: 10.1109/TAP.2022.3209732
    [15]
    Wheeler H. Simple relations derived from a phased array made of an infinite current sheet[C]//1964 Antennas and Propagation Society International Symposium. 1964: 157-160.
    [16]
    黄志洵, 王晓金. 微波传输线理论与实用技术[M]. 北京: 科学出版社, 1996

    Huang Zhixun, Wang Xiaojin. Theory and practical technology of microwave transmission lines[M]. Beijing: Science Press, 1996
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (458) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return