Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209
Citation: Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209

Power pulse sharpening technology based on silicon carbide plasma devices

doi: 10.11884/HPLPB202436.230209
  • Received Date: 2023-07-04
  • Accepted Date: 2023-12-01
  • Rev Recd Date: 2023-12-01
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • A full-circuit simulation model of silicon carbide Drift Step Recovery Diode (DSRD) and Diode Avalanche Shaper (DAS) was built based on Sentaurus. By use of simulation, this paper investigates the capability of silicon carbide plasma devices in pulse sharpening and explains the mechanism of pulse sharpening achieved by these two devices through the plasma concentration distribution inside the devices. With the help of a silicon carbide DSRD, it is possible to reduce the pulse front of voltage pulses with peaks in excess of kilovolts to 300 ps. The combination of the silicon carbide DSRD and DAS can output voltage pulses with a pulse front of 35 ps and a peak of more than two kilovolts. Simulations and experiments show that when the trigger pulse is matched to the silicon carbide DAS, fast turn-on and turn-off can be achieved. Thanks to the magical phenomenon of silicon carbide DAS, it can reduce the half-height width of pulses with peak values above 2 kV to the order of 100 ps. Through spectrum analysis, it is found that after the pulse is sharpened by DAS, its −30 dB spectral width is expanded by a factor of 37 to 7.4 GHz.
  • loading
  • [1]
    Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008

    Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008
    [2]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [3]
    余岳辉, 梁琳. 脉冲功率器件及其应用[M]. 北京: 机械工业出版社, 2010

    Yu Yuehui, Liang Lin. Pulsed power devices and their applications[M]. Beijing: China Machine Press, 2010
    [4]
    Grekhov I V, Efanov V M, Kardo-Sysoev A F, et al. Power drift step recovery diodes (DSRD)[J]. Solid-State Electronics, 1985, 28(6): 597-599. doi: 10.1016/0038-1101(85)90130-3
    [5]
    王淦平, 李飞, 金晓, 等. 快速关断半导体开关工作特性及实验研究[J]. 强激光与粒子束, 2020, 32:025014 doi: 10.11884/HPLPB202032.190298

    Wang Ganping, Li Fei, Jin Xiao, et al. Study of ultrafast semiconductor opening switch[J]. High Power Laser and Particle Beams, 2020, 32: 025014 doi: 10.11884/HPLPB202032.190298
    [6]
    Focia R J, Schamiloglu E, Fleddermann C B, et al. Silicon diodes in avalanche pulse-sharpening applications[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 138-144. doi: 10.1109/27.602484
    [7]
    张玲, 周斌, 谢义方, 等. 基于漂移阶跃恢复二极管的超宽带探地雷达发射技术[J]. 强激光与粒子束, 2009, 21(12):1854-1858

    Zhang Ling, Zhou Bin, Xie Yifang, et al. Transmitter techniques for ultra-wideband ground penetratingradar based on drift step recovery diodes[J]. High Power Laser and Particle Beams, 2009, 21(12): 1854-1858
    [8]
    赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002 doi: 10.11884/HPLPB202032.200102

    Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002 doi: 10.11884/HPLPB202032.200102
    [9]
    王翔宇, 卢彦雷, 朱郁丰, 等. 紧凑型高功率亚纳秒脉冲压缩装置的设计研制[J]. 强激光与粒子束, 2023, 35:025006 doi: 10.11884/HPLPB202335.220254

    Wang Xiangyu, Lu Yanlei, Zhu Yufeng, et al. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35: 025006 doi: 10.11884/HPLPB202335.220254
    [10]
    Kramer D. National Ignition Facility surpasses long-awaited fusion milestone[Z]. 2022.
    [11]
    Ivanov M S, Rodin P B, Ivanov P A, et al. Parameters of silicon carbide diode avalanche shapers for the picosecond range[J]. Technical Physics Letters, 2016, 42(1): 43-46. doi: 10.1134/S1063785016010090
    [12]
    Ivanov P A, Kon'kov O I, Samsonova T P, et al. 4 H-SiC based subnanosecond (150 ps) high-voltage (1600 V) current breakers[J]. Technical Physics Letters, 2018, 44(2): 87-89. doi: 10.1134/S1063785018020086
    [13]
    Guo Dengyao, Zhou Yu, Tang Xiaoyan, et al. Direct comparison of silicon carbide and silicon diode avalanche shaper in multi-pulse applications[J]. Journal of Crystal Growth, 2023, 603: 127007. doi: 10.1016/j.jcrysgro.2022.127007
    [14]
    Zhou Yu, Tang Xiaoyan, Song Qingwen, et al. Demonstration of picosecond 4H-SiC diode avalanche shaper with voltage rise rate of 11.14 kV/ns and peak power density of 62 MW/cm2[J]. IEEE Transactions on Power Electronicss, 2022, 37(4): 3724-3727. doi: 10.1109/TPEL.2021.3122261
    [15]
    Grekhov I V, Ivanov P A, Khristyuk D V, et al. Sub-nanosecond semiconductor opening switches based on 4H-SiC p+pon+-diodes[J]. Solid-State Electronics, 2003, 47(10): 1769-1774. doi: 10.1016/S0038-1101(03)00157-6
    [16]
    Yang Zewei, Liang Lin, Yan Xiaoxue. Dynamic electrical characteristics of 4H-SiC drift step recovery diodes of high voltage[J]. IEEE Transactions on Plasma Science, 2022, 50(5): 1276-1281. doi: 10.1109/TPS.2022.3164752
    [17]
    Afanasyev A V, Ivanov B V, Ilyin V A, et al. A study of 4H-SiC diode avalanche shaper[J]. Journal of Physics:Conference Series, 2017, 917: 082002. doi: 10.1088/1742-6596/917/8/082002
    [18]
    周瑜. 4H-SiC等离子体波开关器件研究[D]. 西安: 西安电子科技大学, 2022

    Zhou Yu. Research on 4H-SiC plasma wave switching devices[D]. Xi’an: Xidian University, 2022
    [19]
    Synopsys. Sentaurus device user guide. Version O-201806[M]. Mountain View: Synopsys, 2018.
    [20]
    王亚杰, 何鹏军, 荆晓鹏, 等. 基于漂移阶跃恢复二极管开关的脉冲源仿真计算[J]. 强激光与粒子束, 2018, 30:095005 doi: 10.11884/HPLPB201830.170398

    Wang Yajie, He Pengjun, Jing Xiaopeng, et al. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30: 095005 doi: 10.11884/HPLPB201830.170398
    [21]
    Merensky L M, Kardo-Sysoev A F, Shmilovitz D, et al. Efficiency study of a 2.2 kV, 1 ns, 1 MHz pulsed power generator based on a drift-step-recovery diode[J]. IEEE Transactions on Plasma Science, 2013, 41(11): 3138-3142. doi: 10.1109/TPS.2013.2284601
    [22]
    Minarskii A M, Rodin P B. Critical voltage growth rate when initiating the ultrafast impact ionization front in a diode structure[J]. Semiconductors, 2000, 34(6): 665-667. doi: 10.1134/1.1188051
    [23]
    Guo Dengyao, Zhou Yu, Tang Xiaoyan, et al. Half trigger operation mode of 4H-SiC diode avalanche shaper[C]//Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology. 2022: 1-3.
    [24]
    Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Investigation on triggering mode and criterion of 4H-SiC diode avalanche shaper[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4075-4080. doi: 10.1109/TED.2023.3283368
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (264) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return