Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Li Jianbing, Qiu Li, Wang Bin, et al. Technology and applications of T/R dual-mode microwave power module[J]. High Power Laser and Particle Beams, 2024, 36: 013003. doi: 10.11884/HPLPB202436.230184
Citation: Li Jianbing, Qiu Li, Wang Bin, et al. Technology and applications of T/R dual-mode microwave power module[J]. High Power Laser and Particle Beams, 2024, 36: 013003. doi: 10.11884/HPLPB202436.230184

Technology and applications of T/R dual-mode microwave power module

doi: 10.11884/HPLPB202436.230184
  • Received Date: 2023-06-18
  • Accepted Date: 2023-10-26
  • Rev Recd Date: 2023-10-26
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • Microwave power module (MPM) is a new type of microwave power device which is a combination of vacuum electronic devices and solid-state electronic devices. It has the characteristics of high frequency, wide bandwidth, large power and small volume and weight, which makes the application of conventional traveling wave tubes more convenient and extensive. Modern warfare is developing towards the integration of radar and electronic warfare, which requires that the power amplifier can work in both high-mode with high peak power and low duty cycle and low-mode with low peak power and quasi-continuous wave. To meet this demand, combined with the requirements of common aperture of electronic system, this paper presents the T/R dual-mode MPM technology. The core of the T/R dual-mode MPM technology is a T/R dual-mode traveling wave tube. Based on the three-port bidirectional T/R traveling wave tube, the signal reverse receiving function is realized by setting a coupling port near the attenuator of the slow wave system. The dual-mode bidirectional function of MPM is realized through the design of T/R dual-mode traveling wave tube, dual-mode amplifier and equalizer, and dual-modulation grid power supply. T/R dual-mode MPM has broad application prospects, especially in combat applications based on Unmanned Aerial Vehicle platform.
  • loading
  • [1]
    李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001 doi: 10.11884/HPLPB202032.200095

    Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001 doi: 10.11884/HPLPB202032.200095
    [2]
    郝保良, 邱立, 邵淑伟, 等. 电子战用功率行波管[J]. 电子信息对抗技术, 2018, 33(1):64-68 doi: 10.3969/j.issn.1674-2230.2018.01.013

    Hao Baoliang, Qiu Li, Shao Shuwei, et al. Traveling-wave tubes for electronic warfare[J]. Electronic Information Warfare Technology, 2018, 33(1): 64-68 doi: 10.3969/j.issn.1674-2230.2018.01.013
    [3]
    王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7

    Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7
    [4]
    廖复疆. 超小型器件和微波功率模块的发展—真空电子和微波光子技术的融合[J]. 真空电子技术, 2018(1):1-9

    Liao Fujiang. The development of micro-device and microwave power module—vacuum electronics mixed with microwave photonics[J]. Vacuum Electronics, 2018(1): 1-9
    [5]
    张志伟, 王斌, 王凤岩. 浅谈MPM发展趋势[J]. 电子信息对抗技术, 2018, 33(1):69-72

    Zhang Zhiwei, Wang Bin, Wang Fengyan. A brief introduction to development trend of the MPM[J]. Electronic Information Warfare Technology, 2018, 33(1): 69-72
    [6]
    柏光东, 徐晓荣, 陈永浩. 一种超宽带中功率MPM的设计[J]. 雷达科学与技术, 2009, 7(5):397-400 doi: 10.3969/j.issn.1672-2337.2009.05.016

    Bai Guangdong, Xu Xiaorong, Chen Yonghao. Design of an ultra-wide band microwave power module[J]. Radar Science and Technology, 2009, 7(5): 397-400 doi: 10.3969/j.issn.1672-2337.2009.05.016
    [7]
    韩家瑞. 双模行波管概述[J]. 电子管技术, 1979(4):4-7

    Han Jiarui. Overview of dual mode traveling wave tubes[J]. Electronic Tube Technology, 1979(4): 4-7
    [8]
    ZhaoChangjiang, Wang Yanmei, Qiu Li. The wideband mini-TWT for T/R module applications[C]//Proceedings of the 22nd International Vacuum Electronics Conference. 2021: 1-2.
    [9]
    张志伟, 李强斌, 费娜, 等. 收发型MPM的实现和应用[J]. 真空电子技术, 2023(5):81-84

    Zhang Zhiwei, Li Qiangbin, Fei Na, et al. Implementation and application of T/R MPMs[J]. Vacuum Electronics, 2023(5): 81-84
    [10]
    董坤. 回旋行波管电子光学系统及高频结构研究[D]. 成都: 电子科技大学, 2017

    Dong Kun. Research on electron optical system and high frequency structure of gyrotron travelling wave tubes[D]. Chengdu: University of Electronic Science and Technologyof China, 2017
    [11]
    张磊, 邱立, 王严梅, 等. 大功率快启双模行波管研制[J]. 真空电子技术, 2021(2):67-72 doi: 10.16540/j.cnki.cn11-2485/tn.2021.02.14

    Zhang Lei, Qiu Li, WangYanmei, et al. Development of a high-power fast warming-up dual-mode TWT[J]. Vacuum Electronics, 2021(2): 67-72 doi: 10.16540/j.cnki.cn11-2485/tn.2021.02.14
    [12]
    焦江娜, 邱立, 王严梅, 等. 7.5~18GHz宽带大功率脉冲行波管关键技术研究[J]. 真空电子技术, 2019(3):13-15 doi: 10.16540/j.cnki.cn11-2485/tn.2019.03.03

    Jiao Jiang’na, Qiu Li, Wang Yanmei, et al. Research on key technologies of 7.5~18GHz broadband high power pulsed TWTs[J]. Vacuum Electronics, 2019(3): 13-15 doi: 10.16540/j.cnki.cn11-2485/tn.2019.03.03
    [13]
    林鹏飞, 李建兵, 郝保良, 等. MPM干扰机设计与实现[J]信息工程大学学报, 2021, 22(3): 294-298

    Lin Pengfei, Li Jianbing, Hao Baoliang, et al. Design and implementation of MPM jammer[J]. Journal of Information Engineering University, 2021, 22(3): 294-298
    [14]
    李建兵, 郭盼盼, 王永康, 等. 小型化行波管放大器热仿真分析及优化设计[J]. 强激光与粒子束, 2019, 31:113004 doi: 10.11884/HPLPB201931.190145

    Li Jianbing, Guo Panpan, Wang Yongkang, et al. Thermal simulation analysis and optimization design of miniaturized traveling wave tube amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 113004 doi: 10.11884/HPLPB201931.190145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (448) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return