Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379
Citation: Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379

A high-power microwave reflectarray antenna based onvariable rotation technique

doi: 10.11884/HPLPB202436.230379
  • Received Date: 2023-10-30
  • Accepted Date: 2023-12-26
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • In this paper, utilizing the geometrical phase shifting method of Variable Rotation Technique (VRT), we propose a beam scanning high-power microwave reflectarray antenna based on the concept of transmission phase difference. Electromagnetic simulation results show that the designed trident-shaped reflectarray antenna element operates at 9.5−10.5 GHz, has a linear phase shift capability within 360° at 0−40° incidence angle, and has a power handling capacity of 1.11 GW under vacuum conditions. A circular-shaped aperture reflectarray antenna with a radius of 200 mm is designed using the proposed element, and verified by full-wave simulation. Through the reconfiguration of the aperture phase distribution, the designed reflectarray antenna can realize the beam scanning in the range of ±40°. At 10 GHz, the maximum gain loss during beam scanning is less than 1.63 dB, the maximum gain reaches 31.1 dBi, the corresponding aperture efficiency is 73.42%, while the minimum aperture efficiency is more than 50%. The sidelobe level and axial ratio are always lower than −18.7 dB and 1.6 dB, respectively.
  • loading
  • [1]
    Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [2]
    Yang Yiming, Yuan Chengwei, Qian Baoliang. A beam steering antenna for X-band high power applications[J]. AEU - International Journal of Electronics and Communications, 2014, 68(8): 763-766. doi: 10.1016/j.aeue.2014.03.002
    [3]
    李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8):2125-2129 doi: 10.3788/HPLPB20112308.2125

    Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125
    [4]
    Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [5]
    Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371
    [6]
    Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [7]
    Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256.
    [8]
    Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
    [9]
    Sun Yunfei, He Juntao, Yuan Chengwei, et al. Ku-band radial-line continuous transverse stub antenna with transmit-array lens for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2050-2059. doi: 10.1109/TAP.2019.2949117
    [10]
    Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A wideband reconfigurable dual-branch helical reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 825-833. doi: 10.1109/TAP.2020.3016379
    [11]
    Zhao Xuhao, Xu Liang, Zhang Jiande, et al. A dielectric embedded reflectarray for high-power microwave application[J]. Review of Scientific Instruments, 2022, 93: 064703. doi: 10.1063/5.0091106
    [12]
    Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [13]
    Huang J, Pogorzelski R J. A Ka-band microstrip reflectarray with elements having variable rotation angles[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 650-656. doi: 10.1109/8.668907
    [14]
    Mao Yilin, Xu Shenheng, Yang Fan, et al. A novel phase synthesis approach for wideband reflectarray design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4189-4193. doi: 10.1109/TAP.2015.2447004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (291) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return