Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197
Citation: Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197

Research on solid state Marx power supply with fast front

doi: 10.11884/HPLPB202436.230197
  • Received Date: 2023-06-28
  • Accepted Date: 2023-11-06
  • Rev Recd Date: 2023-11-09
  • Available Online: 2023-11-20
  • Publish Date: 2024-01-12
  • Nanosecond pulse electric field ablation requires the generation of thousands of volts of nanosecond pulses on a 100 Ω load, and accelerating the pulse front is beneficial for obtaining narrower nanosecond pulses. This article proposes a solid-state Marx generator with a fast front, which inserts an inductor into each stage of the circuit and allows the discharge tube and charging tube to conduct simultaneously for tens of nanoseconds. After the discharge tube is fully opened, the charging tube is turned off to discharge the load, eliminating the limitation of stray inductance on the pulse front by the discharge tube and discharge circuit, and obtaining a high-voltage pulse with a fast front. A 32 level Marx prototype was built, and in the experiment, a high-voltage pulse with a voltage rise of 35 ns, a pulse width of 800 ns, and a current of 186 A was obtained on a low resistance load of 100 Ω by adjusting the through time. We compared and analyzed the effect of the direct time between the charging tube and the discharge tube on the rising edge, and found that the longer the direct time, the faster the front of the pulse current. The maximum peak current at the output end can reach 186 A. This indicates that the pulse voltage source can effectively increase the current output and improve the system’s load capacity. Compared with traditional improvement methods, this scheme not only improves the system’s anti-interference ability, but also reduces the number of switches used and reduces the cost of pulse power supply.
  • loading
  • [1]
    理查斯·L·卡斯尔. 采用固态开关的高压脉冲电源: 101124714A[P]. 2008-02-13

    Richards S L. High voltage pulsed power supply using solid state switches: 101124714A[P]. 2008-02-13
    [2]
    Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [3]
    Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proceedings of 16th IEEE International Pulsed Power Conference. 2007: 720-723.
    [4]
    刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [5]
    江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564 doi: 10.3788/HPLPB20102203.0561

    Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [6]
    Wei Linsheng, Yuan Dingkun, Zhang Yafang, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104: 61-64. doi: 10.1016/j.vacuum.2014.01.009
    [7]
    曹鹤飞, 孙永卫, 原青云, 等. 航天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27:103204 doi: 10.11884/HPLPB201527.103204

    Cao Hefei, Sun Yongwei, Yuan Qingyun, et al. Research on surface charging of back grounded dielectric material of spacecraft[J]. High Power Laser and Particle Beams, 2015, 27: 103204 doi: 10.11884/HPLPB201527.103204
    [8]
    方兴东, 关志成, 王黎明, 等. 高压脉冲放电在水处理中的应用及发展[J]. 高电压技术, 2000, 26(1):29-31

    Fang Xingdong, Guan Zhicheng, Wang Liming, et al. Research on treatment of wastewater by high voltage pulse discharge[J]. High Voltage Engineering, 2000, 26(1): 29-31
    [9]
    Redondo L M, Kandratsyeu A, Barnes M J. Marx generator prototype for kicker magnets based on SiC MOSFETs[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3334-3339. doi: 10.1109/TPS.2018.2808194
    [10]
    Wang Yifan, Liu Kefu, Qiu Jian, et al. A stage-stage paralleled topology of all-solid-state Marx generator for high current[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4488-4494. doi: 10.1109/TPS.2019.2914313
    [11]
    吕潇宇. 微波辐照煤焦低温等离子体的形成机理[D]. 太原: 太原理工大学, 2022

    Lv Xiaoyu. The Formation mechanism of low-temperature plasma of coal char irradiated by microwave[D]. Taiyuan: Taiyuan University of Technology, 2022
    [12]
    吴启翔, 陈永刚, 龚立娇, 等. 纳秒脉冲电场肿瘤消融关键技术研究综述[J]. 中国医疗设备, 2023, 38(5):36-43

    Wu Qixiang, Chen Yonggang, Gong Lijiao, et al. Review of key techniques for nanosecond pulsed electric field of tumor ablation[J]. China Medical Devices, 2023, 38(5): 36-43
    [13]
    马振宏. 纳秒脉冲电场肿瘤消融实验研究[D]. 杭州: 浙江大学, 2020

    Ma Zhenhong. Experimental study on tumor ablation using nanosecond pulsed electric field[D]. Hangzhou: Zhejiang University, 2020
    [14]
    Yang W, Wu Y H, Yin Dong, et al. Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields[J]. Technology in Cancer Research & Treatment, 2011, 10(3): 281-286.
    [15]
    Chen Xinhua, Kolb J F, Swanson R J, et al. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields[J]. Pigment Cell & Melanoma Research, 2010, 23(4): 554-563.
    [16]
    Joshi R P, Schoenbach K H. Bioelectric effects of intense ultrashort pulses[J]. Critical ReviewsTM in Biomedical Engineering, 2010, 38(3): 255-304. doi: 10.1615/CritRevBiomedEng.v38.i3.20
    [17]
    伍友成, 刘高旻, 戴文峰, 等. 轻小型高电压大电流脉冲电源研制[J]. 高电压技术, 2018, 44(9):3016-3021

    Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Design of small-size high voltage and large current pulsed power source[J]. High Voltage Engineering, 2018, 44(9): 3016-3021
    [18]
    Chen Jie, Zhang Ruobing, Xiao Jianfu, et al. Influence of pulse rise time on the inactivation of staphylococcus aureus by pulsed electric fields[J]. IEEE Transactions on Plasma Science, 2010, 38(8): 1935-1941. doi: 10.1109/TPS.2010.2050785
    [19]
    饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001 doi: 10.11884/HPLPB202032.190472

    Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001 doi: 10.11884/HPLPB202032.190472
    [20]
    Dos Santos K P, Neto T R F, Cruz C M T. Voltage impulse generator using boost converter array applied in electrical grounding systems[C]//Proceedings of the IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC). 2015: 1-5.
    [21]
    Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [22]
    Barnes M J, Wait G D, Figley C B. A FET based frequency and duty factor agile 6 kV pulse generator[C]//Proceedings of the 21st International Power Modulator Symposium Conference. 1994: 97-100.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (235) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return