Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Zhang Yuchen, Dai Ling, Fan Shengting, et al. Research on switching devices simplification of multistage XRAM pulse power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211
Citation: Zhang Yuchen, Dai Ling, Fan Shengting, et al. Research on switching devices simplification of multistage XRAM pulse power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211

Research on switching devices simplification of multistage XRAM pulse power supply

doi: 10.11884/HPLPB202436.230211
  • Received Date: 2023-07-08
  • Accepted Date: 2023-09-15
  • Rev Recd Date: 2023-09-13
  • Available Online: 2023-09-18
  • Publish Date: 2024-01-12
  • The ability of electromagnetic emission mainly depends on the pulse power supply system, and the optimization of pulse power supply is one of the key technologies to make further breakthroughs in electromagnetic emission technology. Inductive energy storage type pulse power supply has great advantages in energy density and has far-reaching development potential. The XRAM pulse power supply based on series charging and parallel discharge has the advantages of simple structure and strong expandability. In this paper, the working principle of diode devices in multilevel XRAM power supply topology is analyzed, and a scheme is proposed to simplify the number of diode devices based on function classification. A simulation model is established for a 30-stage XRAM pulse power supply with a railgun load using ICCOS. Each power module consists of five stages, resulting in a total energy storage capacity of 365 kJ for the system, with an emission efficiency of nearly 20%. By comparing the simulation results of model performance indexes before and after simplification, it is proved that the simplified lower arm diode of the first stage is unfavorable to the operation of the multistage power supply. Simplifying the final countercurrent capacitor series diode in the multistage topology, and the antiparallel diode of charging thyristor under the premise of optimizing the countercurrent capacitor parameters, have no obvious effect on the discharge current of the power module.
  • loading
  • [1]
    马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24):222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028

    Ma Shangang, Yu Xinjie, Li Zhen. A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028
    [2]
    Liebfried O, Hundertmark S, Frings P. Inductive pulsed power supply for a railgun artillery system[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2550-2555. doi: 10.1109/TPS.2019.2903725
    [3]
    李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014

    Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014
    [4]
    Kanter M, Pokrvailo A, Shaked N, et al. Factors in inductive storage system design[C]//Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference. 1995: 186-191.
    [5]
    Yu Xinjie, Liu Xukun. Overview of circuit topologies for inductive pulsed power supplies[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 265-272. doi: 10.23919/TEMS.2017.8086105
    [6]
    Liebfried O. Review of inductive pulsed power generators for railguns[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1108-1114. doi: 10.1109/TPS.2017.2686648
    [7]
    Liu Xukun, Yu Xinjie. A new pulse-compression circuit with residual energy recovered[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2018: 1-4.
    [8]
    Liebfried O, Brommer V. A four-stage XRAM generator as inductive pulsed power supply for a small-caliber railgun[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2805-2809. doi: 10.1109/TPS.2013.2257873
    [9]
    DedieP, Brommer V, Scharnholz S. Experimental realization of an eight-stage XRAM generator based on ICCOS semiconductor opening switches, fed by a magnetodynamic storage system[J]. IEEE Transactions on Magnetics, 2009, 45(1): 266-271. doi: 10.1109/TMAG.2008.2008418
    [10]
    DediéP, Brommer V, Scharnholz S. Twenty-stage toroidal XRAM generator switched by countercurrent thyristors[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 263-267. doi: 10.1109/TPS.2010.2055168
    [11]
    Dedie P, Brommer V. Wire explosion fed by a 32-kJ XRAM generator switched by semiconductor elements[C]//2009 IET European Pulsed Power Conference. 2009: 1-4.
    [12]
    Liebfried O, Roch M. Augmented railgun with integrated XRAM current multiplication[C]//2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2014: 279-282.
    [13]
    LiebfriedO, BrommerV. Demonstration of a 1 MJ XRAM generator supplying a medium caliber railgun[J]. IEEE Access, 2020, 8: 225018-225031. doi: 10.1109/ACCESS.2020.3044441
    [14]
    于歆杰, 初祥祥. 串充并放型电感储能脉冲电源XRAM的解耦改进[J]. 清华大学学报(自然科学版), 2012, 52(5):710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026

    Yu Xinjie, Chu Xiangxiang. Decoupling to improve XRAM inductive pulse power sources with series charging and parallel discharging characteristics[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(5): 710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026
    [15]
    EngelT G, Neri J M, Veracka M J. Characterization of the velocity skin effect in the surface layer of a railgun sliding contact[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1837-1844. doi: 10.1109/TMAG.2008.922310
    [16]
    BarberJ P, Challita A. Velocity effects on metal armature contact transition (railguns)[J]. IEEE Transactions on Magnetics, 1993, 29(1): 733-738. doi: 10.1109/20.195667
    [17]
    Aigner S, Igenbergs E. Friction and ablation measurements in a round bore railgun[J]. IEEE Transactions on Magnetics, 1989, 25(1): 33-39. doi: 10.1109/20.22500
    [18]
    Liang Zhi, Dai Ling, Feng Yongjie, et al. Modeling and parameter study of electromagnetic launch system driven by inductive pulsed power supply[C]//22nd International Symposium on High Voltage Engineering. 2021: 784-789.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (289) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return