Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Yi He, Wang Guiqiu, Wang Shixuan, et al. Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma[J]. High Power Laser and Particle Beams, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200
Citation: Yi He, Wang Guiqiu, Wang Shixuan, et al. Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma[J]. High Power Laser and Particle Beams, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200

Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma

doi: 10.11884/HPLPB202436.230200
  • Received Date: 2023-06-29
  • Accepted Date: 2023-12-14
  • Rev Recd Date: 2023-12-14
  • Available Online: 2024-03-01
  • Publish Date: 2024-02-29
  • This paper, studies the influence of laser on the stopping power of a carbon ion in a two-component plasma, with emphasis on the effects of different laser amplitude, laser frequency, laser angle, plasma density, and plasma temperature on the stopping power based on the linearized Vlasov-Poisson model and molecular dynamics simulation. The research results show that the influence of laser on stopping power is very obvious in all the projectile region. In the low energy region (the magnitude of incident velocity is 0-0.1 plasma electron thermal velocity), the energy loss of the carbon ion mainly comes from the contribution of ions in the plasma, especially when the incident velocity is around the plasma ion thermal velocity, the first peak of stopping power occurs. In the medium and high energy region (the magnitude of incident velocity is greater than 0.1 plasma electron thermal velocity), the energy loss of the carbon ion mainly comes from the contribution of electrons in the plasma, especially when the magnitude of incident velocity is around 1.5 times the plasma electron thermal velocity, the second peak of stopping power occurs. The bimodal structure of the stopping power of the carbon ion in the plasma reflects the contribution of ions and electrons to the stopping power in different energy regions. On the other hand, the increase of laser intensity or laser frequency can decrease the stopping power of the carbon ion. The stopping power will be enhanced with the increase of plasma density or the decrease of electron temperature. Such an enhancement is more significant for stopping power for the low energy peak caused by ions compared to high energy peak caused by electrons.
  • loading
  • [1]
    Eliezer S, Murakami M, Martinez Val J M. Equation of state and optimum compression in inertial fusion energy[J]. Laser and Particle Beams, 2007, 25(4): 585-592. doi: 10.1017/S0263034607000699
    [2]
    Barriga-Carrasco M D. Target electron collision effects on energy loss straggling of protons in an electron gas at any degeneracy[J]. Physics of Plasmas, 2008, 15: 033103. doi: 10.1063/1.2888525
    [3]
    Cook R C, Kozioziemski B J, Nikroo A, et al. National Ignition Facility target design and fabrication[J]. Laser and Particle Beams, 2008, 26(3): 479-487. doi: 10.1017/S0263034608000499
    [4]
    Golubev A, Basko M, Fertman A, et al. Dense plasma diagnostics by fast proton beams[J]. Physical Review E, 1998, 57(3): 3363-3367. doi: 10.1103/PhysRevE.57.3363
    [5]
    Alviri V M, Asem M M. Hadron therapy based on laser acceleration in the plasma channel using oxygen ionization[J]. IEEE Access, 2019, 7: 183262-183291. doi: 10.1109/ACCESS.2019.2952916
    [6]
    Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
    [7]
    Vieux G, Brunetti E, Cipiccia S, et al. Towards a high efficiency amplifier based on Raman amplification[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014018. doi: 10.1088/1361-6587/ab56de
    [8]
    Williams G J, Tommasini R, Lemos N, et al. High-energy differential-filtering photon spectrometer for ultraintense laser-matter interactions[J]. Review of Scientific Instruments, 2018, 89: 10F116. doi: 10.1063/1.5039383
    [9]
    Bulanov S V, Khoroshkov V S. Feasibility of using laser ion accelerators in proton therapy[J]. Plasma Physics Reports, 2002, 28(5): 453-456. doi: 10.1134/1.1478534
    [10]
    Ledingham K W D, Galster W, Sauerbrey R. Laser-driven proton oncology—a unique new cancer therapy?[J]. The British Journal of Radiology, 2007, 80(959): 855-858. doi: 10.1259/bjr/29504942
    [11]
    Kluge T, Rödel M, Metzkes-Ng J, et al. Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser[J]. Physical Review X, 2018, 8: 031068.
    [12]
    Parigger C G. Laser-plasma and stellar astrophysics spectroscopy[J]. Contributions of the Astronomical Observatory Skalnaté Pleso, 2020, 50(1): 15-31.
    [13]
    Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419): 1488-1493. doi: 10.1126/science.284.5419.1488
    [14]
    Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
    [15]
    Jia Shaokui, Zhou Jiaqi, Wang Xing, et al. Cold-target electron-ion-coincidence momentum-spectroscopy study of electron-impact single and double ionization of N2 and O2 molecules[J]. Physical Review A, 2023, 107: 032819. doi: 10.1103/PhysRevA.107.032819
    [16]
    Frenje J A. Nuclear diagnostics for inertial confinement fusion (ICF) plasmas[J]. Plasma Physics and Controlled Fusion, 2019, 62: 023001.
    [17]
    Ren Jieru, Ma Bubo, Liu Lirong, et al. Target density effects on charge transfer of laser-accelerated carbon ions in dense plasma[J]. Physical Review Letters, 2023, 130: 095101. doi: 10.1103/PhysRevLett.130.095101
    [18]
    Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
    [19]
    胡章虎, 王琼, 宋远红, 等. 带电粒子与磁化等离子体相互作用的极化效应及能量损失[J]. 强激光与粒子束, 2008, 20(11):1919-1922

    Hu Zhanghu, Wang Qiong, Song Yuanhong, et al. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 1919-1922
    [20]
    Brandt W, Kitagawa M. Effective stopping-power charges of swift ions in condensed matter[J]. Physical Review B, 1982, 25(9): 5631-5637. doi: 10.1103/PhysRevB.25.5631
    [21]
    D’Avanzo J, Hofmann I, Lontano M. Effective charge in heavy ion stopping in classical collisionless plasmas[J]. Physics of Plasmas, 1996, 3(11): 3885-3889. doi: 10.1063/1.871576
    [22]
    Arista N R, Galvo R O M, Miranda L C M. Laser-field effects on the interaction of charged particles with a degenerate electron gas[J]. Physical Review A, 1989, 40(7): 3808-3816. doi: 10.1103/PhysRevA.40.3808
    [23]
    Wang Guiqiu, Song Yuanhong, Wang Younian, et al. Influence of a laser field on Coulomb explosions and stopping power for swift molecular ions interacting with solids[J]. Physical Review A, 2002, 66: 042901. doi: 10.1103/PhysRevA.66.042901
    [24]
    D’Avanzo J, Lontano M, Tome’ E, et al. Heavy-ion interaction in a nonisothermal plasma with two-ion correlation effects[J]. Physical Review E, 1995, 52(1): 919-931. doi: 10.1103/PhysRevE.52.919
    [25]
    Wang Guiqiu, Wang Younian. Influence of strong laser fields on Coulomb explosions energy losses of correlated-ion clusters in plasmas[J]. Physics of Plasmas, 2004, 11(3): 1187-1193. doi: 10.1063/1.1645794
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (519) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return