Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Zhang Jinhao, Su Jiangtao, Xie Weiyu, et al. Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement[J]. High Power Laser and Particle Beams, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214
Citation: Zhang Jinhao, Su Jiangtao, Xie Weiyu, et al. Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement[J]. High Power Laser and Particle Beams, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214

Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement

doi: 10.11884/HPLPB202436.230214
  • Received Date: 2023-07-10
  • Accepted Date: 2023-08-28
  • Rev Recd Date: 2023-09-08
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • Under the impact of high-power electromagnetic pulses, RF integrated microsystems are prone to generate load mismatch, which may lead to system failure or even damage. Based on a real-time waveform test method, this paper analyzes the mechanism of load mismatch of RF devices leading to device damage. This method utilizes vector network analyzer as the main instrument, obtaining the real-time voltage and current waveforms with reflection signal and phase reference module. Active load-pull technique is used to simulate high power coupled electromagnetic pulse injection and ruggedness test under 39∶1 VSWR is done. Furthermore, harmonic source injection is newly applied to simulate the electromagnetic interference caused by harmonics, obtaining the harmonic impedance mismatch characteristics of the device. The test results of actual heterojunction bipolar transistor device indicate that the combination of fundamental and harmonic interference components causes the transient peak value of the output voltage to be higher, which is more likely to damage the device. Hence the fundamental and harmonic components should be considered when conducting electromagnetic protection.
  • loading
  • [1]
    谢斌, 刘洁, 王波, 等. 强电磁脉冲防护技术研究[J]. 火控雷达技术, 2020, 49(2):111-115

    Xie Bin, Liu Jie, Wang Bo, et al. Research on strong electromagnetic pulse protection technology[J]. Fire Control Radar Technology, 2020, 49(2): 111-115
    [2]
    姜刚, 闫萌. 一种相控阵雷达电磁脉冲防护技术研究[C]//2021年全国微波毫米波会议论文集(上册). 2021: 3

    Jiang Gang, Yan Meng. Research on electromagnetic pulse protection technology of phased array radar[C]//Proceedings of the 2021 National Microwave and Millimeter Wave Conference (Volume 1). 2021: 3
    [3]
    Laribi H, Dehkhoda P, Tavakoli A, et al. Susceptibility analysis of a low-noise amplifier against an electromagnetic pulse[J]. IET Science, Measurement & Technology, 2020, 14(10): 1044-1048.
    [4]
    Zhao Siyuan, Pan Tao, Su Jiangtao. A real-time waveform load-pull technique enabling the access to RF PA ruggedness[C]//2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). 2021: 1-3.
    [5]
    Loescher D, Tasker P, Cripps S. Using waveform engineering to understand the impact of harmonic terminations during 5: 1 VSWR stress tests[C]//2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR). 2016: 49-52.
    [6]
    张猛. 异质结双极晶体管HBT单边增益研究[D]. 杭州: 浙江大学, 2008

    Zhang Meng. Unilateral power gain of heterojunction bipolar transistor[D]. Hangzhou: Zhejiang University, 2008
    [7]
    Deng Junxiong, Gudem P S, Larson L E, et al. A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(2): 529-537. doi: 10.1109/TMTT.2004.840629
    [8]
    Singhal S, Li T, Chaudhari A, et al. Reliability of large periphery GaN-on-Si HFETs[J]. Microelectronics Reliability, 2006, 46(8): 1247-1253. doi: 10.1016/j.microrel.2006.02.009
    [9]
    陈繁, 马婷, 谭开洲, 等. SBFL结构SiGe HBT器件的击穿特性研究[J]. 微电子学, 2017, 47(3):433-436

    Chen Fan, Ma Ting, Tan Kaizhou, et al. Research on the breakdown characteristics of SiGe HBT with SBFL structure[J]. Microelectronics, 2017, 47(3): 433-436
    [10]
    Formicone G, Boueri F, Burger J, et al. Analysis of bias effects on VSWR ruggedness in RF LDMOS for avionics applications[C]//Microwave Integrated Circuit Conference. 2008: 28-31.
    [11]
    McGenn W, Choi H, Lees J, et al. Development of a RF waveform stress test procedure for GaN HFETs subjected to infinite VSWR sweeps[C]//IEEE/MTT-S International Microwave Symposium Digest. 2012: 1-3.
    [12]
    Bengtsson O, Chevtchenko S, Chowdhary A, et al. VSWR testing of RF-power GaN transistors[C]//9th European Microwave Integrated Circuit Conference. 2014: 460-463.
    [13]
    张硕. 高功率微波作用下的低噪声放大器的损坏机理及其防护研究[D]. 上海: 上海交通大学, 2016

    Zhang Shuo. Investigation of the destruction mechanism and protection circuit of a low noise amplifier injected by high power microwave[D]. Shanghai: Shanghai Jiao Tong University, 2016
    [14]
    Chen J J, Gao G B, Chyi J I, et al. Breakdown behavior of GaAs/AlGaAs HBTs[J]. IEEE Transactions on Electron Devices, 1989, 36(10): 2165-2172. doi: 10.1109/16.40896
    [15]
    Wu Y F, Keller B P, Keller S, et al. Measured microwave power performance of AlGaN/GaN MODFET[J]. IEEE Electron Device Letters, 1996, 17(9): 455-457. doi: 10.1109/55.536291
    [16]
    郭庭铭, 苏江涛, 刘军, 等. 一种基于双工器的谐波有源负载牵引测试系统[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(6):6-12

    Guo Tingming, Su Jiangtao, Liu Jun, et al. A Duplexer-based harmonic active load-pull measurement system[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2020, 40(6): 6-12
    [17]
    Jang H, Ko Y, Roblin P. Development of multiharmonic verification artifact for the LSNA and NVNA (MTT-11)[J]. IEEE Microwave Magazine, 2013, 14(1): 134-139. doi: 10.1109/MMM.2012.2226640
    [18]
    Su Jiangtao, Yang Baoguo, Gao Haijun, et al. A novel TRM calibration method for improvement of modelling accuracy at mm-wave frequency[C]//2018 IEEE/MTT-S International Microwave Symposium - IMS. 2018: 1300-1303.
    [19]
    赖雨瑞. 微波射频探针的去嵌入研究及测试应用[D]. 成都: 电子科技大学, 2019

    Lai Yurui. De-embedding research and application of microwave/RF probes[D]. Chengdu: University of Electronic Science and Technology of China, 2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (311) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return