Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260
Citation: Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260

Primary study on time control technology of active phased array based on photoconductive microwave source

doi: 10.11884/HPLPB202436.230260
  • Received Date: 2023-08-11
  • Accepted Date: 2023-10-22
  • Rev Recd Date: 2023-10-22
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • Solid-state photoconductive microwave source based on wide-bandgap photoconductive semiconductor is a new way of high power microwave generation. The scheme has the characteristics of high power density and wide frequency band, and its low time jitter characteristic makes it have great potential in power synthesis. The construction of active phased array of photoconductive microwave devices using optical beamforming network is an important way for the application of photoconductive microwave devices. In this paper, the principle of optical microwave phased array system is analyzed, and the theoretical models of differential true delay phased array and true delay phased array considering phase random error are constructed. The key factors affecting power synthesis and beam scanning are quantitatively analyzed and simulated, and the delay precision index is proposed.The results show that for the n×10 array transmitting signal at 1 GHz, when the delay phase variance is less than 10 ps, the pointing deviation is less than 0.2° and the peak gain loss is less than 2%. When the delay step accuracy is less than 10 ps, the pointing deviation is less than 0.2°, and the peak gain loss is less than 0.03%. On this basis, the real time delay network architecture of photoconductive microwave is designed, which provides a reference for the development of higher power and larger scale photoconductive microwave synthesis technology in the future.
  • loading
  • [1]
    Kelkar K S, Islam N E, Fessler C M, et al. Design and characterization of silicon carbide photoconductive switches for high field applications[J]. Journal of Applied Physics, 2006, 100: 124905. doi: 10.1063/1.2365713
    [2]
    Sullivan J S, Stanley J R. Wide bandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2528-2532. doi: 10.1109/TPS.2008.2002147
    [3]
    Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003
    [4]
    Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4: 1600501. doi: 10.1002/aelm.201600501
    [5]
    Rakheja S, Huang L, Hau-Riege S, et al. Performance modeling of silicon carbide photoconductive switches for high-power and high-frequency applications[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 1118-1128. doi: 10.1109/JEDS.2020.3022031
    [6]
    Zhu Li, Hu Long, Shen Xin, et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode[J]. IEEE Electron Device Letters, 2023, 44(2): 289-292. doi: 10.1109/LED.2022.3227174
    [7]
    Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
    [8]
    Xiao Longfei, Yang Xianglong, DuanPeng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [9]
    Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon carbide photoconductiveswitches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [10]
    He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
    [11]
    Shi Nuannuan, Li Wei, Zhu Ninghua, et al. Optically controlled phase array antenna [Invited][J]. Chinese Optics Letters, 2019, 17: 052301. doi: 10.3788/COL201917.052301
    [12]
    何梓昂, 徐嘉鑫, 周涛, 等. 宽带恒定束宽光学多波束形成技术研究[J]. 半导体光电, 2022, 43(1):51-55

    He Zi’ang, Xu Jiaxin, Zhou Tao, et al. Study on wideband constant beamwidth optical multi-beam forming technologies[J]. Semiconductor Optoelectronics, 2022, 43(1): 51-55
    [13]
    Zhao Qingchao, Zhang Yi, Wang Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619-3632. doi: 10.1109/TGRS.2019.2958863
    [14]
    Ye Xingwei, Zhang Fangzheng, Pan Shilong. Optical true time delay unit for multi-beamforming[J]. Optics Express, 2015, 23(8): 10002-10008. doi: 10.1364/OE.23.010002
    [15]
    Zheng Pengfei, Wang Chenquan, Xu Xuemeng, et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna[J]. IEEE Photonics Journal, 2019, 11(4): 1-9.
    [16]
    Cheng Qiman, Zheng Shilie, Zhang Qiang, et al. An integrated optical beamforming network for two-dimensional phased array radar[J]. Optics Communications, 2021, 489: 126809. doi: 10.1016/j.optcom.2021.126809
    [17]
    Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1351-1354. doi: 10.1109/LPT.2019.2926508
    [18]
    王邦继, 刘庆想, 周磊, 等. 相控阵天线主控系统中实时数据交互[J]. 强激光与粒子束, 2018, 30:013003 doi: 10.11884/HPLPB201830.170289

    Wang Bangji, Liu Qingxiang, Zhou Lei, et al. Real-time data exchange of beam steering system for phased array antenna[J]. High Power Laser and Particle Beams, 2018, 30: 013003 doi: 10.11884/HPLPB201830.170289
    [19]
    田中成, 靳学明, 朱玉鹏. 微波光子电子战技术原理与应用[M]. 北京: 科学出版社, 2018: 30-32

    Tian Zhongcheng, Jin Xueming, Zhu Yupeng. Principle and application of microwave photonic electronic warfare technology[M]. Beijing: Science Press, 2018: 30-32
    [20]
    Yu Anliang, Zou Weiwen, Li Shuguang, et al. A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM[J]. IEEE Photonics Journal, 2014, 6(4): 1-10.
    [21]
    Bliek L, Wahls S, Visscher I, et al. Automatic delay tuning of a novel ring resonator-based photonic beamformer for a transmit phased array antenna[J]. Journal of Lightwave Technology, 2019, 37(19): 4976-4984. doi: 10.1109/JLT.2019.2926621
    [22]
    田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35:041001 doi: 10.11884/HPLPB202335.220305

    Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001 doi: 10.11884/HPLPB202335.220305
    [23]
    王建, 蔡海文, 杨飞, 等. 光控微波波束形成器: CN103414519B[P]. 2016-09-07

    Wang Jian, Cai Haiwen, Yang Fei, et al. Optically controlled microwave beamformers: CN103414519B[P]. 2016-09-07
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (486) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return