Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Zhang Yang, Zhou Yang, Zhang Zehai, et al. PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder[J]. High Power Laser and Particle Beams, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237
Citation: Zhang Yang, Zhou Yang, Zhang Zehai, et al. PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder[J]. High Power Laser and Particle Beams, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237

PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder

doi: 10.11884/HPLPB202436.230237
  • Received Date: 2023-07-28
  • Accepted Date: 2023-09-28
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-12-28
  • Publish Date: 2024-02-29
  • PIN diodes are critical devices for preventing damage from strong electromagnetic signals. Accurately predicting the temperature rise curve of the PIN diode has important guiding significance for selecting protective devices. Machine learning-based methods can effectively predict the characteristics of devices. However, the temperature rise characteristic curve of the PIN diode contains strong nonlinearity and small fluctuations, and traditional machine learning methods cannot predict accurately. To accurately predict the temperature rise characteristic curve of PIN diodes, this paper proposes a prediction method that combines variational mode decomposition (VMD) and autoencoder to decompose the temperature rise characteristics into sub-signals, which include high-frequency fluctuations, intermediate quantities, and low-frequency trend quantities. Then an autoencoder is used to predict each component. Finally, the predicted values of the components are added together, so as to accurately predict the temperature rise characteristic curve of the PIN diode. By comparing with various machine learning methods, it is verified that combining VMD decomposition can effectively improve prediction accuracy, and the advantage of autoencoder in fitting characteristic curves is also verified.
  • loading
  • [1]
    袁月乾, 陈自东, 马弘舸, 等. PIN限幅器的高功率微波单脉冲效应研究[J]. 强激光与粒子束, 2020, 32:063003 doi: 10.11884/HPLPB202032.190174

    Yuan Yueqian, Chen Zidong, Ma Hongge, et al. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32: 063003 doi: 10.11884/HPLPB202032.190174
    [2]
    王明, 马弘舸. 组合脉冲内间隔对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2018, 30:063002 doi: 10.11884/HPLPB201830.170426

    Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30: 063002 doi: 10.11884/HPLPB201830.170426
    [3]
    Bera S C, Bharadhwaj P S. Insight into PIN diode behaviour leads to improved control circuit[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2005, 52(1): 1-4. doi: 10.1109/TCSII.2004.839537
    [4]
    张永战, 孟凡宝, 赵刚. Ⅰ层厚度对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2017, 29:093002 doi: 10.11884/HPLPB201729.170087

    Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of I layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29: 093002 doi: 10.11884/HPLPB201729.170087
    [5]
    赵振国, 周海京, 马弘舸, 等. 微波脉冲频率与重频对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2015, 27:103239 doi: 10.11884/HPLPB201527.103239

    Zhao Zhenguo, Zhou Haijing, Ma Hongge, et al. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27: 103239 doi: 10.11884/HPLPB201527.103239
    [6]
    Ko K, Lee J K, Kang M, et al. Prediction of process variation effect for ultrascaled GAA vertical FET devices using a machine learning approach[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4474-4477. doi: 10.1109/TED.2019.2937786
    [7]
    Liang Wei, Yang Xuejiao, Miao Meng, et al. Novel ESD compact modeling methodology using machine learning techniques for snapback and non-snapback ESD devices[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(4): 455-464. doi: 10.1109/TDMR.2021.3116599
    [8]
    Wang Jing, Kim Y H, Ryu J, et al. Artificial neural network-based compact modeling methodology for advanced transistors[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1318-1325. doi: 10.1109/TED.2020.3048918
    [9]
    Yang Qihang, Qi Guodong, Gan Weizhuo, et al. Transistor compact model based on multigradient neural network and its application in SPICE circuit simulations for gate-all-around Si Cold source FETs[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4181-4188. doi: 10.1109/TED.2021.3093376
    [10]
    Mehta K, Wong H Y. Prediction of FinFET current-voltage and capacitance-voltage curves using machine learning with Autoencoder[J]. IEEE Electron Device Letters, 2021, 42(2): 136-139. doi: 10.1109/LED.2020.3045064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (92) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return