Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Wang Pingping, Cheng Erwei, Zhou Xing, et al. Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers[J]. High Power Laser and Particle Beams, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345
Citation: Wang Pingping, Cheng Erwei, Zhou Xing, et al. Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers[J]. High Power Laser and Particle Beams, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345

Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers

doi: 10.11884/HPLPB202436.230345
  • Received Date: 2023-07-01
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2024-01-30
  • Available Online: 2024-02-05
  • Publish Date: 2024-02-29
  • Conducting material shielding effectiveness testing in complex electromagnetic environments of reverberation chambers has become a key technology for accurately evaluating the electromagnetic protection ability of materials. To study the performance of the boundary deformation mutual coupling reverberation chamber shielding effectiveness testing system, experiments were conducted to verify the dynamic range, electric field distribution characteristics, and uncertainty. The results show that: in actual testing, a test result less than 60 dB is considered a reliable test value; the standard deviation of the electric field in both the transmitting and receiving reverberation chambers is less than 3 dB within the testing frequency range, fully meeting the uniformity requirements of the reverberation chamber; especially, the standard deviation of the spatial electric field in the receiving reverberation chamber is all less than 2 dB, and the uniformity is excellent; the expanded uncertainty of the testing system is 5.90 dB, which can be used as a material shielding effectiveness testing platform.
  • loading
  • [1]
    GJB 151B-2013, 军用设备和分系统电磁发射和敏感度要求与测量[S]

    GJB 151B-2013, Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]
    [2]
    GB/T 17626.21-2014, 电磁兼容 试验和测量技术 混波室试验方法[S]

    GB/T 17626.21-2014, Electromagnetic compatibility—testing and measurement techniques—reverberation chamber test methods[S]
    [3]
    王庆国, 程二威. 电波混响室理论与应用[M]. 北京: 国防工业出版社, 2013

    Wang Qingguo, Cheng Erwei. Theories and applications of electromagnetic reverberation chamber[M]. Beijing: National Defense Industry Press, 2013
    [4]
    Hill D A. Electromagnetic fields in cavities: deterministic and statistical theories[M]. Piscataway: Wiley-IEEE Press, 2009.
    [5]
    Andrieu G. On the possible benefits of inserting metallic diffractors to improve low frequency performance of reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 304-307. doi: 10.1109/TEMC.2020.3038990
    [6]
    IEC 61000-4-21: 2011, Electromagnetic compatibility (EMC) part 4-21: testing and measurement techniques—reverberation chamber test methods[S].
    [7]
    Sorrentino A, Nunziata F, Cappa S, et al. A semi-reverberation chamber configuration to emulate second-order descriptors of real-life indoor wireless propagation channels[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 3-10. doi: 10.1109/TEMC.2020.3005770
    [8]
    Reis A, Sarrazin F, Richalot E, et al. Radar cross section pattern measurements in a mode-stirred reverberation chamber: theory and experiments[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5942-5952. doi: 10.1109/TAP.2021.3060581
    [9]
    姜林, 王庆国, 程二威. 机械搅拌混响室独立样本数建模及实验[J]. 强激光与粒子束, 2013, 25(11):3050-3054 doi: 10.3788/HPLPB20132511.3050

    Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054 doi: 10.3788/HPLPB20132511.3050
    [10]
    程二威, 刘逸飞. 频率搅拌混响室原理及应用[J]. 强激光与粒子束, 2015, 27:103202 doi: 10.11884/HPLPB201527.103202

    Cheng Erwei, Liu Yifei. Theory and application of frequency stirring reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27: 103202 doi: 10.11884/HPLPB201527.103202
    [11]
    沈远茂, 陶洪波, 李吉, 等. 固定散射体对提高源搅拌混响室性能的研究[J]. 高电压技术, 2014, 40(3):918-922

    Shen Yuanmao, Tao Hongbo, Li Ji, et al. Research on performance improvement of source stirring reverberation chamber introduced by stationary diffusers[J]. High Voltage Engineering, 2014, 40(3): 918-922
    [12]
    Kouveliotis N K, Trakadas P T, Capsalis C N. Examination of field uniformity in vibrating intrinsic reverberation chamber using the FDTD method[J]. Electronics Letters, 2002, 38(3): 109-110. doi: 10.1049/el:20020076
    [13]
    Kouveliotis N K, Trakadas P T, Capsalis C N. FDTD modeling of a vibrating intrinsic reverberation chamber[J]. Progress in Electromagnetics Research, 2003, 39: 47-59. doi: 10.2528/PIER02050804
    [14]
    Leferink F, Boudenot J C, Van Etten W. Experimental results obtained in the vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 00CH37016). 2000: 639-644.
    [15]
    Leferink F. In-situ high field strength testing using a transportable reverberation chamber[C]//2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility. 2008: 379-382.
    [16]
    Serra R, Leferink F B J. Optimizing the stirring strategy for the vibrating intrinsic reverberation chamber[C]//9th International Symposium on EMC and 20th International Wroclaw Symposium on Electromagnetic Compatibility. 2010: 457-462.
    [17]
    Hara M, Takahashi Y, Vogt-Ardatjew R, et al. Statistical analysis for reverberation chamber with flexible shaking walls with various amplitudes[C]//2018 International Symposium on Electromagnetic Compatibility. 2018: 694-698.
    [18]
    Serra R, Leferink F, Canavero F. “Good-but-imperfect” electromagnetic reverberation in a VIRC[C]//2011 IEEE International Symposium on Electromagnetic Compatibility. 2011: 954-959.
    [19]
    刘逸飞, 陈永光, 程二威, 等. 基于能量守恒原理的嵌套混响室法材料屏蔽效能计算[J]. 高电压技术, 2014, 40(3):945-950

    Liu Yifei, Chen Yongguang, Cheng Erwei, et al. Material shielding effectiveness calculation for nested reverberation chamber method based on energy conservation principle[J]. High Voltage Engineering, 2014, 40(3): 945-950
    [20]
    Skrzypczynski J. Dual vibrating intrinsic reverberation chamber used for shielding effectiveness measurements[C]//10th International Symposium on Electromagnetic Compatibility. 2011: 133-136.
    [21]
    程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33:123002 doi: 10.11884/HPLPB202133.210472

    Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002 doi: 10.11884/HPLPB202133.210472
    [22]
    许宏光. 基于C#的混响室自动化校准及测试软件的开发以及混响室内场强特性的研究[D]. 北京: 北京交通大学, 2014

    Xu Hognqiang. Development of automatic calibration and test software for reverberation chamber based on C# and the research of field strength characteristics inside a reverberation chamber [D]. Beijing: Beijing Jiaotong University, 2014
    [23]
    苏政铭, 刘强, 赵远, 等. 基于柔性屏蔽材料混响室的设计与应用[J]. 强激光与粒子束, 2018, 30:073202 doi: 10.11884/HPLPB201830.180048

    Su Zhengming, Liu Qiang, Zhao Yuan, et al. Design and application of flexible shielding material based reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30: 073202 doi: 10.11884/HPLPB201830.180048
    [24]
    陈超婵, 祝思婷, 蔡青. 电磁屏蔽薄膜屏蔽效能的测量不确定度分析与评定[J]. 科学技术创新, 2020(29):35-36 doi: 10.3969/j.issn.1673-1328.2020.29.013

    Chen Chaochan, Zhu Siting, Cai Qing. Uncertainty analysis and evaluation of shielding effectiveness measurement uncertainty for electromagnetic shielding films[J]. Scientific and Technological Innovation Information, 2020(29): 35-36 doi: 10.3969/j.issn.1673-1328.2020.29.013
    [25]
    秦高强. EUT电尺寸对混响室抗扰度测试不确定度影响分析[D]. 南京: 东南大学, 2018

    Qin Gaoqiang. Analysis of influence of EUT electrical size on uncertainty of reverberation chamber immunity test[D]. Nanjing: Southeast University, 2018
    [26]
    程二威, 王平平, 张怡, 等. 边界形变互耦混响室屏蔽效能测试技术研究[J]. 高电压技术, 2023, 49(7):3102-3109

    Cheng Erwei, Wang Pingping, Zhang Yi, et al. Research on shielding effectiveness test technology of boundary deformation mutual coupling reverberation chamber[J]. High Voltage Engineering, 2023, 49(7): 3102-3109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (94) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return