Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Yang Wenyuan, Dong Zhiwei, Dong Ye, et al. Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam[J]. High Power Laser and Particle Beams, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275
Citation: Yang Wenyuan, Dong Zhiwei, Dong Ye, et al. Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam[J]. High Power Laser and Particle Beams, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275

Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam

doi: 10.11884/HPLPB202436.230275
  • Received Date: 2023-08-17
  • Accepted Date: 2023-10-24
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-11-07
  • Publish Date: 2024-02-29
  • As a kind of high power microwave generator, the plasma relativistic microwave generators (PRMGs) have the virtues of wideband high power microwave output and fine frequency tunability. Thus PRMG is very useful for a wide variety of applications. The beam-wave interaction region in the PRMG is generally a cylindrical metal waveguide with preformed annular plasma. The dispersion characteristics of the operating slow plasma wave TM01 mode (called as P-TM01 mode below) in the interaction region are critical to the output properties. Therefore, the dispersion characteristics and field distributions of the P-TM01 mode in a cylindrical waveguide loaded with annular plasma beam is studied numerically using the all electromagnetic PIC (Particle-in-Cell) code. Variation trends of the dispersion characteristics and the field distributions of the P-TM01 mode with the density np, radial thickness Δrp and radial position rp of the plasma beam, the intensity of the guiding magnetic field Bz and the radius of the waveguide rw are obtained. Simulation results show that: (1) Both np and Δrp affect the dispersion characteristics markedly and the frequency of the P-TM01 mode increases with the increasing of either np or Δrp at the same axial wave number kz. (2) Variations of rp, rw or Bz have very slight influence on the dispersion in the interested range. It is indicated that one can choose relatively larger dimensions of the waveguide for larger power capacity and lower guiding magnetic field for compactness if necessary. (3) The basic features of the field distributions of the P-TM01 mode will not change with the variations of the above mentioned physical parameters. But with the increasing of axial mode number and kz, the electromagnetic energy will be trapped inside the plasma beam gradually and no effective beam-wave interaction will happen in the end. Therefore, it is suggested to choose the operating point with relatively small kz for the efficient operation of PRMG.
  • loading
  • [1]
    Krementsov V I, Rabinovich M S, Rukhadze A A, et al. Excitation of electromagnetic waves in a plasma in a homogeneous magnetic field by a strong-current relativistic electron beam[J]. Soviet Journal of Experimental and Theoretical Physics, 1975, 42(4): 622-627.
    [2]
    Bogdankevich L S, Kuzelev M V, Rukhadze A A. Plasma microwave electronics[J]. Soviet Physics Uspekhi, 1981, 24(1): 1-16. doi: 10.1070/PU1981v024n01ABEH004606
    [3]
    Kuzelev M V, Mukhametzyanov F K, Rabinovich M S, et al. Relativistic plasma UHF generator[J]. Sov Phys JETP, 1982, 54: 780.
    [4]
    Kuzelev M V, Loza O T, Ponomarev A V, et al. Spectral characteristics of a relativistic plasma microwave generator[J]. Journal of Experimental and Theoretical Physics, 1996, 82(6): 1102-1111.
    [5]
    Strelkov P S, Ivanov I E, Shumeiko D V. Noise characteristics of a plasma relativistic microwave amplifier[J]. Plasma Physics Reports, 2016, 42(7): 653-657. doi: 10.1134/S1063780X16070102
    [6]
    Bogdankevich I L, Litvin V O, Loza O T. On the development of plasma relativistic microwave oscillator without strong magnetic field[J]. Bulletin of the Lebedev Physics Institute, 2016, 43(2): 62-65. doi: 10.3103/S1068335616020032
    [7]
    Ernyleva S E, Loza O T. Plasma relativistic microwave noise amplifier with the inverse configuration[J]. Physics of Wave Phenomena, 2017, 25(1): 56-59. doi: 10.3103/S1541308X17010095
    [8]
    Litvin V O, Loza O T. High-power broadband plasma maser with magnetic self-insulation[J]. Physics of Plasmas, 2018, 25: 013105. doi: 10.1063/1.5005492
    [9]
    Kartashov I N, Kuzelev M V. The use of a coaxial electrodynamic system for amplification of microwave range waves during the development of beam–plasma instability[J]. Plasma Physics Reports, 2021, 47(6): 548-556. doi: 10.1134/S1063780X2106009X
    [10]
    Ernyleva S E, Loza O T. Microwave pulse shortening in plasma relativistic high-current microwave electronics[J]. Physics of Wave Phenomena, 2017, 25(2): 130-136. doi: 10.3103/S1541308X17020091
    [11]
    Kartashov I N, Kuzelev M V, Strelkov P S, et al. Influence of plasma unsteadiness on the spectrum and shape of microwave pulses in a plasma relativistic microwave amplifier[J]. Plasma Physics Reports, 2018, 44(2): 289-298. doi: 10.1134/S1063780X1802006X
    [12]
    Ivanov I E. Radiation spectra of the plasma relativistic microwave oscillator[J]. Plasma Physics Reports, 2019, 45(7): 662-673. doi: 10.1134/S1063780X19060072
    [13]
    Andreev S E, Bogdankevich I L, Gusein-Zade N G, et al. Change in the generation mode of the plasma relativistic microwave oscillator[J]. Plasma Physics Reports, 2019, 45(7): 674-684. doi: 10.1134/S1063780X1907002X
    [14]
    Strelkov P S, Tarakanov V P, Dias Mikhailova D E, et al. Ultrawideband plasma relativistic microwave source[J]. Plasma Physics Reports, 2019, 45(4): 345-354. doi: 10.1134/S1063780X19030097
    [15]
    Ponomarev A V, Buleyko A B, Ul’yanov D K. Feedback suppression in the plasma relativistic microwave noise amplifier with inverse configuration[J]. Plasma Physics Reports, 2020, 46(9): 950-953. doi: 10.1134/S1063780X2009007X
    [16]
    Ivanov I E. Narrow-band generation of plasma relativistic microwave generator[J]. Plasma Physics Reports, 2021, 47(5): 440-452. doi: 10.1134/S1063780X21050032
    [17]
    Andreev S E, Bogdankevich I L, Gusein-Zade N G, et al. Effect of the erosion of collector surface on the operation of a pulse-periodic plasma relativistic microwave generator[J]. Plasma Physics Reports, 2021, 47(3): 257-268. doi: 10.1134/S1063780X21030028
    [18]
    Strelkov P S, Ivanov I E, Dias Mikhailova E D, et al. Spectra of plasma relativistic microwave amplifier of monochromatic signal[J]. Plasma Physics Reports, 2021, 47(3): 269-278. doi: 10.1134/S1063780X21030090
    [19]
    Birau M. Linear theory of plasma Čerenkov masers[J]. Physical Review E, 1996, 54(5): 5599-5611. doi: 10.1103/PhysRevE.54.5599
    [20]
    Kuzelev M V, Rukhadze A A. Present status of the theory of relativistic plasma microwave electronics[J]. Plasma Physics Reports, 2000, 26(3): 231-254. doi: 10.1134/1.952843
    [21]
    Kartashov I N, Kuzelev M V, Rukhadze A A. Amplification of surface waves in a plasma waveguide by a straight relativistic electron beam in a finite magnetic field[J]. Plasma Physics Reports, 2004, 30(1): 56-61. doi: 10.1134/1.1641977
    [22]
    Yang Wenyuan, Dong Ye, Chen Jun, et al. Brief introduction and recent applications of a large-scale parallel three-dimensional PIC code named NEPTUNE3D[J]. IEEE Transactions on Plasma Science, 2012, 40(7): 1937-1944. doi: 10.1109/TPS.2012.2195683
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (142) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return