Volume 36 Issue 5
Apr.  2024
Turn off MathJax
Article Contents
Jiang Jinbo, Xu Lin, Luo Zheng, et al. Design of high voltage constant current charging power supply based on LC series resonance[J]. High Power Laser and Particle Beams, 2024, 36: 055006. doi: 10.11884/HPLPB202436.230295
Citation: Jiang Jinbo, Xu Lin, Luo Zheng, et al. Design of high voltage constant current charging power supply based on LC series resonance[J]. High Power Laser and Particle Beams, 2024, 36: 055006. doi: 10.11884/HPLPB202436.230295

Design of high voltage constant current charging power supply based on LC series resonance

doi: 10.11884/HPLPB202436.230295
  • Received Date: 2023-09-04
  • Accepted Date: 2024-01-13
  • Rev Recd Date: 2024-01-12
  • Available Online: 2024-03-02
  • Publish Date: 2024-04-28
  • LC series resonant high voltage constant current charging power supply can realize high efficiency and fast charging of the capacitor and has an excellent capacity of anti-load short-circuit, hence it has extensive application prospects in high repetition frequency pulsed power systems. The efficiency of the charging power supply is a crucial factor to determine the ability of the system to operate at repetition rate. Improving efficiency is the primary goal of designing high-voltage capacitor charging power supply. According to the working principle of LC series resonant circuit, it is analyzed that the operating mode of power supply, the switching frequency of the inverter bridge and the distribution parameters of the high-frequency transformer are the main ingredients affecting the efficiency. For a DC power supply with a power of 10 kW and an output voltage of 40 kV, the main circuit parameters were calculated and the circuit model was established using Pspice to verify its accuracy. The soft switching technology was used to reduce the switching loss, and the high frequency transformer with smaller distribution parameters was designed to further improve the efficiency. On this basis, the overall structure design of the power supply was completed. Finally, the charging characteristics of the power supply were tested. Experimental tests indicate that the power supply can charge a 0.1 µF capacitor to 39.5 kV within 37 ms, and the charging efficiency of the power supply is 87.1%.
  • loading
  • [1]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2]
    刘劲东, 何大勇, 杨兴旺, 等. 双谐振拓扑高压脉冲电容器充电电源[J]. 强激光与粒子束, 2019, 31:040021 doi: 10.11884/HPLPB201931.180314

    Liu Jingdong, He Dayong, Yang Xingwang, et al. High voltage pulse capacitor charging power supply based on double resonant topology[J]. High Power Laser and Particle Beams, 2019, 31: 040021 doi: 10.11884/HPLPB201931.180314
    [3]
    甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30:065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [4]
    Lippincott A C, Nelms R M. A capacitor-charging power supply using a series-resonant topology, constant on-time/variable frequency control, and zero-current switching[J]. IEEE Transactions on Industrial Electronics, 1991, 38(6): 438-447. doi: 10.1109/41.107099
    [5]
    Elwell R, Cherry J, Fagan S, et al. Current and voltage controlled capacitor charging schemes[J]. IEEE Transactions on Magnetics, 1995, 31(1): 38-42. doi: 10.1109/20.364732
    [6]
    李伟, 刘庆想, 张政权. 恒功率输入恒流输出的电容器充电电源[J]. 强激光与粒子束, 2016, 28:075003 doi: 10.11884/HPLPB201628.075003

    Li Wei, Liu Qingxiang, Zhang Zhengquan. Capacitor charging power supply with constant power input and constant current output[J]. High Power Laser and Particle Beams, 2016, 28: 075003 doi: 10.11884/HPLPB201628.075003
    [7]
    蔡政平, 李伟松. 太赫兹器件测试用高重复频率高压脉冲电源[J]. 强激光与粒子束, 2018, 30:023101 doi: 10.11884/HPLPB201830.170274

    Cai Zhengping, Li Weisong. Development of high frequency pulsed power supply for THz device test[J]. High Power Laser and Particle Beams, 2018, 30: 023101 doi: 10.11884/HPLPB201830.170274
    [8]
    刘福才, 金书辉, 赵晓娟. LC串联谐振和LCC串并联谐振在高压脉冲电容充电电源中的应用比较[J]. 高电压技术, 2012, 38(12):3347-3356

    Liu Fucai, Jin Shuhui, Zhao Xiaojuan. Comparison of LC series resonant and LCC series-parallel resonant in high-voltage pulse capacitor charging power supply application[J]. High Voltage Engineering, 2012, 38(12): 3347-3356
    [9]
    李网生. 脉冲调制器新型充电电源的研究[D]. 南京: 南京理工大学, 2005: 4-5

    Li Wangsheng. Research on new charging power supply for pulse modulator[D]. Nanjing: Nanjing University of Science and Technology, 2005: 4-5
    [10]
    钟和清, 徐至新, 邹旭东, 等. 软开关高压开关电源研究[J]. 高电压技术, 2003, 29(8):7-9

    Zhong Heqing, Xu Zhixin, Zou Xudong, et al. Research on the high voltage soft switching power supply[J]. High Voltage Engineering, 2003, 29(8): 7-9
    [11]
    杨实, 任书庆, 来定国, 等. 大功率高压恒流充电源研制[J]. 强激光与粒子束, 2015, 27:095006 doi: 10.11884/HPLPB201527.095006

    Yan Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006 doi: 10.11884/HPLPB201527.095006
    [12]
    Parate B, Kumar R S, Thakur K, et al. Design and modelling of SRC based capacitor charging power supply for high power klystron modulator using MULTISIM[C]//Proceedings of 2019 National Power Electronics Conference. 2019: 1-6.
    [13]
    张纵横. 脉冲碎石谐振充电电源的研制[D]. 武汉: 华中科技大学, 2019: 6-9

    Zhang Zongheng. Development of pulse stone resonant charging power supply[D]. Wuhan: Huazhong University of Science and Technology, 2019: 6-9
    [14]
    冯传均, 伍友成, 何泱, 等. 正负双极性重复频率充电电源研制[J]. 强激光与粒子束, 2023, 35:035001 doi: 10.11884/HPLPB202335.220301

    Feng Chuanjun, Wu Youcheng, He Yang, et al. Development of a bipolar repetitive high voltage power supply[J]. High Power Laser and Particle Beams, 2023, 35: 035001 doi: 10.11884/HPLPB202335.220301
    [15]
    Schrittwieser L, Leibl M, Kolar J W. 99% efficient isolated three-phase matrix-type DAB buck–boost PFC rectifier[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 138-157. doi: 10.1109/TPEL.2019.2914488
    [16]
    谭亲跃, 林福昌, 王少荣, 等. 串联谐振式高压电容器充电电源的效率特性研究[J]. 高压电器, 2015, 51(4):78-83

    Tan Qinyue, Lin Fuchang, Wang Shaorong, et al. Study on efficiency of high voltage capacitor charging power supply with series resonant[J]. High Voltage Apparatus, 2015, 51(4): 78-83
    [17]
    李名加, 常安碧, 康强. 具有大耦合系数的Tesla变压器理论分析[J]. 高电压技术, 2006, 32(5):51-53 doi: 10.3969/j.issn.1003-6520.2006.05.015

    Li Mingjia, Chang Anbi, Kang Qiang. Analysis of tesla transformer with high coupling coefficient[J]. High Voltage Engineering, 2006, 32(5): 51-53 doi: 10.3969/j.issn.1003-6520.2006.05.015
    [18]
    Kelley A W, Yadusky W F. Rectifier design for minimum line current harmonics and maximum power factor[C]//Proceedings of the Fourth Annual IEEE Applied Power Electronics Conference and Exposition. 1989: 13-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (63) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return