Volume 36 Issue 5
Apr.  2024
Turn off MathJax
Article Contents
Chen Lei, Li Guochao, Zhang Ge, et al. Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator[J]. High Power Laser and Particle Beams, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306
Citation: Chen Lei, Li Guochao, Zhang Ge, et al. Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator[J]. High Power Laser and Particle Beams, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306

Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator

doi: 10.11884/HPLPB202436.230306
  • Received Date: 2023-09-11
  • Accepted Date: 2024-01-15
  • Rev Recd Date: 2024-01-15
  • Available Online: 2024-03-12
  • Publish Date: 2024-04-28
  • With the increasing and extensive applications of high-voltage nanosecond solid-state pulse generators in various fields such as biology, industry, and environment, the pulse waveform, voltage amplitude, pulse duration, and pulse repetition frequency have become essential controllable variables for specific pulse power applications. To further reduce the size and cost of the pulsed power supply, a high-voltage nanosecond pulse modulator with high repetition frequency is proposed with positive Marx circuit, drivers with multiple pulse transformers as the core, and ns rising time. This driver enables the design of a high-voltage nanosecond pulse modulator with ns-level rise time and high repetition frequency. The proposed driver features a compact structure and eliminates the need for multiple isolated power supplies for driving. It allows the gate voltage of two MOSFETs to rise and fall rapidly and synchronously at a high repetition frequency, enabling the generation of gate voltage with controllable amplitude within one hundred nanoseconds. In the case, not only the maximum pulse width is not limited by the magnetic core saturation, but also the negative bias voltage can reliably turn off the switch, improving the reliability of the circuit. In addition, the influence of different turns and magnetic core materials on the driving waveform is studied. A 14-stage pulse modulator prototype is developed. Test results show that the output voltage and pulse width of the modulator based on the drivers are continuously adjustable, with the ability to change the pulse profile. The maximum output voltage reaches 5.5 kV with 100 ns to 50 ms width, minimum rise time of approximately 18 ns, and a continuous repetition frequency of 100 kHz.
  • loading
  • [1]
    Rao Xian, Chen Xiaodong, Zhou Jun, et al. Design of a high voltage pulse generator with large width adjusting range for tumor treatment[J]. Electronics, 2020, 9: 1053. doi: 10.3390/electronics9061053
    [2]
    Rezanejad M, Sheikholeslami A, Adabi J. Modular switched capacitor voltage multiplier topology for pulsed power supply[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 635-643. doi: 10.1109/TDEI.2013.004067
    [3]
    Redondo L M, Silva J F. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications[J]. IEEE Transactions on Plasma Science, 2009, 37(1): 171-178. doi: 10.1109/TPS.2008.2006056
    [4]
    姜松, 邱力文, 饶俊峰, 等. 新型全固态高压多电平波形发生器的研制[J]. 强激光与粒子束, 2019, 31:115003 doi: 10.11884/HPLPB201931.190124

    Jiang Song, Qiu Liwen, Rao Junfeng, et al. Development of a new all-solid-state high voltage multilevel waveform generator[J]. High Power Laser and Particle Beams, 2019, 31: 115003 doi: 10.11884/HPLPB201931.190124
    [5]
    Pirc E, Miklavčič D, Uršič K, et al. High-frequency and high-voltage asymmetric bipolar pulse generator for electroporation based technologies and therapies[J]. Electronics, 2021, 10: 1203. doi: 10.3390/electronics10101203
    [6]
    Fan Rui, Wang Yaogong, Zhang Xiaoning, et al. Parameterized nanosecond pulse realization through parametrical modulation of timing sequence of switches in Marx circuit[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4096-4104. doi: 10.1109/TPS.2019.2923416
    [7]
    邹林, 余厉阳, 段誉. 可编程的多波形脉冲低温等离子电源[J]. 真空科学与技术学报, 2018, 38(10):869-874

    Zou Lin, Yu Liyang, Duan Yu. Novel programmable pulsed power-supply with multi-waveform output for generation of low temperature plasma[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(10): 869-874
    [8]
    王鹏, 赵政嘉, 刘雪山, 等. 电力电子设备中的电气绝缘问题[J]. 高电压技术, 2018, 44(7):2309-2322

    Wang Peng, Zhao Zhengjia, Liu Xueshan, et al. Electrical insulation problems in power electronics devices[J]. High Voltage Engineering, 2018, 44(7): 2309-2322
    [9]
    刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [10]
    王冬冬, 邱剑, 刘克富. 基于半导体开关和磁开关的全固态脉冲电源[J]. 强激光与粒子束, 2010, 22(4):730-734 doi: 10.3788/HPLPB20102204.0730

    Wang Dongdong, Qiu Jian, Liu Kefu. All solid-state pulsed power generator with semiconductor and magnetic switches[J]. High Power Laser and Particle Beams, 2010, 22(4): 730-734 doi: 10.3788/HPLPB20102204.0730
    [11]
    Kamada A, Sugai T, Tokuchi A, et al. Step-down DC-DC converter for solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2021, 49(10): 3149-3153. doi: 10.1109/TPS.2021.3114320
    [12]
    Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [13]
    Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183
    [14]
    Kandratsyeu A, Sabaleuski U, Redondo L, et al. Four channel 6.5 kV, 65 A, 100 ns-100 µs generator with advanced control of pulse and burst protocols for biomedical and biotechnological applications[J]. Applied Sciences, 2021, 11: 11782. doi: 10.3390/app112411782
    [15]
    饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332

    Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332
    [16]
    Zeng Weirong, Yu Liang, Dong Shoulong, et al. A novel high-frequency bipolar pulsed power generator for biological applications[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12861-12870. doi: 10.1109/TPEL.2020.2994333
    [17]
    米彦, 万晖, 卞昌浩, 等. 基于模块化多电平换流器的模块化前后沿可调高压纳秒脉冲发生器的研制[J]. 电工技术学报, 2020, 35(6):1279-1289

    Mi Yan, Wan Hui, Bian Changhao, et al. Design of modular high-voltage nanosecond pulse generator with adjustable rise/fall time based on modular multilevel converter topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1279-1289
    [18]
    Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [19]
    周琦. 一种适用于桥式电路的碳化硅MOSFET驱动器[J]. 电力电子技术, 2018, 52(11):43-46

    Zhou Qi. A novel SiC MOSFET gate driver circuit for bridge circuit[J]. Power Electronics, 2018, 52(11): 43-46
    [20]
    张鹏宁, 向雪岩, 李伟, 等. 面向电力电子变压器的高频变压器技术[J]. 高电压技术, 2022, 48(12):4996-5011

    Zhang Pengning, Xiang Xueyan, Li Wei, et al. High frequency transformer technology for power electronic transformer[J]. High Voltage Engineering, 2022, 48(12): 4996-5011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (34) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return