Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Zhang Lei, Weng Ming, Wang Yue, et al. Three-dimensional cylindrical coordinate conformal grid generating technology for particle-in-cell simulation of high-power microwave device[J]. High Power Laser and Particle Beams, 2024, 36: 043025. doi: 10.11884/HPLPB202436.230299
Citation: Zhang Lei, Weng Ming, Wang Yue, et al. Three-dimensional cylindrical coordinate conformal grid generating technology for particle-in-cell simulation of high-power microwave device[J]. High Power Laser and Particle Beams, 2024, 36: 043025. doi: 10.11884/HPLPB202436.230299

Three-dimensional cylindrical coordinate conformal grid generating technology for particle-in-cell simulation of high-power microwave device

doi: 10.11884/HPLPB202436.230299
  • Received Date: 2023-09-06
  • Accepted Date: 2023-11-17
  • Rev Recd Date: 2023-11-17
  • Available Online: 2023-11-29
  • Publish Date: 2024-02-29
  • Based on the object-oriented C++ language, a 3D cylindrical coordinate conformal grid generation program is developed. The conformal grid generation of beam-field interaction(BFI) device discretizing is performed, providing integral line and face elements for Particle-in-Cell simulation algorithm. By defining the basic elements of the three-dimensional cylindrical coordinate grid system, including grid step-size, grid index, guardian grid layer and bounding box, the spatial information of the model can be converted into the information of the cylindrical coordinate grid information necessary for numerical calculation. The grid cells on-axis should be specially treated so as to maintain the consistency of the particle-in-cell algorithm between the axial grid and the non-axial grid. The discrete boundary points on the model subsurface and on the model edge were attained by ray-tracing algorithm. Meanwhile, the vertices of the model were obtained by topological relations. Topological information and cylindrical coordinate grid information of the two types of boundary points and model vertices were recorded, then the basic grid elements were coupled with the boundary point information, finally the model was reconstructed in the discrete grid system. Taking the relativistic magnetron for example, using the conformal grid generation technique proposed in the paper to discretize the model, the transparent cathode, anode, and resonant cavity structures of the magnetron can be identified.
  • loading
  • [1]
    Hockney R W, Eastwood J W. Computer simulation using particles[M]. New York: Taylor & Francis, 1988.
    [2]
    Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: McGraw-Hill, 1985.
    [3]
    Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85. doi: 10.1109/27.106800
    [4]
    Dey S, Mittra R. A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects[J]. IEEE Microwave and Guided Wave Letters, 1997, 7(9): 273-275. doi: 10.1109/75.622536
    [5]
    Cary J R, Abell D, Amundson J, et al. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures[J]. Journal of Physics:Conference Series, 2006, 46(1): 200-204.
    [6]
    Nieter C, Ovtchinnikov S, Smithe D N, et al. Self-consistent simulations of multipacting in superconducting radio frequencies[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 769-771.
    [7]
    Smithe D, Stoltz P, Loverich J, et al. Development and application of particle emission algorithms from cut-cell boundaries in the vorpal EM-FDTD-PIC simulation tool[C]//Proceedings of 2008 IEEE International Vacuum Electronics Conference. 2008: 217-218.
    [8]
    Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
    [9]
    Jurgens T G, Taflove A, Umashankar K, et al. Finite-difference time-domain modeling of curved surfaces (EM scattering)[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(4): 357-366. doi: 10.1109/8.138836
    [10]
    牛朴, 侯新宇. 任意三维物体FDTD共形网格生成算法[J]. 计算机仿真, 2009, 26(7):236-239

    Niu Pu, Hou Xinyu. A conformal FDTD grid generation algorithm for arbitrary three-dimensional geometric object[J]. Computer Simulation, 2009, 26(7): 236-239
    [11]
    胡晓娟, 葛德彪, 魏兵, 等. 基于目标三角面元模型生成FDTD共形网格的方法[J]. 强激光与粒子束, 2007, 19(8):1333-1337

    Hu Xiaojuan, Ge Debiao, Wei Bing, et al. Conformal FDTD mesh-generating technique for objects with triangle-patch model[J]. High Power Laser and Particle Beams, 2007, 19(8): 1333-1337
    [12]
    胡晓娟, 卢兆林, 葛德彪, 等. 基于三角面元的涂层目标FDTD共形网格生成技术[J]. 系统工程与电子技术, 2010, 32(9):1884-1888

    Hu Xiaojuan, Lu Zhaolin, Ge Debiao, et al. Conformal FDTD mesh-generating scheme for coated targets based on triangle-patch[J]. Systems Engineering and Electronics, 2010, 32(9): 1884-1888
    [13]
    陈伶璐, 廖成, 常雷, 等. 基于切片-线扫描的共形网格剖分技术研究[J]. 电波科学学报, 2014, 29(1):47-54

    Chen Linglu, Liao Cheng, Chang Lei, et al. Conformal mesh generator based on slice-line scanning method[J]. Chinese Journal of Radio Science, 2014, 29(1): 47-54
    [14]
    王玥, 付梅艳, 陈再高, 等. 用于全电磁粒子模拟的复杂建模及网格生成技术[J]. 强激光与粒子束, 2011, 23(11):2994-2998 doi: 10.3788/HPLPB20112311.2994

    Wang Yue, Fu Meiyan, Chen Zaigao, et al. Technique of complex geometry modeling and grid generation for fully electromagnetic particle simulation[J]. High Power Laser and Particle Beams, 2011, 23(11): 2994-2998 doi: 10.3788/HPLPB20112311.2994
    [15]
    王玥, 李永东, 蒋铭, 等. 三维共形电磁粒子模拟技术研究[J]. 真空电子技术, 2019(6):12-22

    Wang Yue, Li Yongdong, Jiang Ming, et al. Three-dimensional conformal electromagnetic particle-in-cell code[J]. Vacuum Electronics, 2019(6): 12-22
    [16]
    刘美琴, 刘纯亮, 王洪广, 等. A6相对论磁控管模式切换射频信号馈入方法[J]. 强激光与粒子束, 2013, 25(10):2636-2642 doi: 10.3788/HPLPB20132510.2636

    Liu Meiqin, Liu Chunliang, Wang Hongguang, et al. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642 doi: 10.3788/HPLPB20132510.2636
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (165) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return