Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Bao Xianfeng, Li Hanyu, Zhou Haijing. Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials[J]. High Power Laser and Particle Beams, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370
Citation: Bao Xianfeng, Li Hanyu, Zhou Haijing. Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials[J]. High Power Laser and Particle Beams, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370

Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials

doi: 10.11884/HPLPB202436.230370
  • Received Date: 2023-10-24
  • Accepted Date: 2024-04-04
  • Rev Recd Date: 2024-03-04
  • Available Online: 2024-03-15
  • Publish Date: 2024-02-29
  • To analyze the electromagnetic environmental effects of composite shell platforms in strong electromagnetic environments such as nuclear electromagnetic pulses, we have obtained an equivalent calculation method of the finite-difference time-domain method in dealing with weakly conducting thin-layer dielectric materials based on the integral form of the Maxwell-Amper theorem. The thin layer model can be appropriately thickened while proportionally reducing its conductivity when the equivalent wavelength of the medium is larger than the model thickness. The electromagnetic coupling characteristics of the model before and after parameter equivalence are essentially the same. This method can reduce the computational effort by increasing the grid step size. In addition, this method does not require changing the time step format of the traditional finite-difference time-domain method and does not affect the stability of the calculation. Numerical experiments, such as the examples using infinitely large thin plates, thin spherical layers, and electromagnetic coupling of unmanned aerial vehicles with thin shells, have shown that it has good applicability to the electromagnetic coupling simulation of thin-shell platforms containing weakly conducting materials with millimeter thickness in nuclear electromagnetic pulse environments.
  • loading
  • [1]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12

    Du Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12
    [2]
    孙斌, 吴天航, 张松, 等. HIRF环境下飞机复合材料燃油箱屏蔽效能研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(9):1197-1202,1228

    Sun Bin, Wu Tianhang, Zhang Song, et al. Research on shielding effectiveness of aircraft composite fuel tank in HIRF environment[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1197-1202,1228
    [3]
    王天顺. 复合材料结构飞机电磁兼容性分析[C]//第四届全国电磁兼容学术交流大会论文集. 1996: 187-191

    Wang tianshun, EMC analyses of composite aircraft[C]//Proceedings of the 4th National Academic Exchange Conference on Electromagnetic Compatibility. 1996: 187-191
    [4]
    孟雪松, 张瀚, 鲍献丰, 等. 碳纤维增强复合材料薄层高效建模方法研究[J]. 电波科学学报, 2019, 34(1):19-26

    Meng Xuesong, Zhang Han, Bao Xianfeng, et al. High efficient modeling techniques of carbon fiber reinforced composite thin layer[J]. Chinese Journal of Radio Science, 2019, 34(1): 19-26
    [5]
    孟雪松, 鲍献丰, 刘德赟, 等. 嵌入式薄片模型在时域有限差分算法中的应用[J]. 强激光与粒子束, 2017, 29:123203 doi: 10.11884/HPLPB201729.170196

    Meng Xuesong, Bao Xianfeng, Liu Deyun, et al. Embedded thin film model in finite difference time domain method[J]. High Power Laser and Particle Beams, 2017, 29: 123203 doi: 10.11884/HPLPB201729.170196
    [6]
    Oh K S, Schutt-Aine J E. An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(7): 660-666. doi: 10.1109/8.391136
    [7]
    Shi Lijuan, Yang Lixia, Ma Hui, et al. Collocated SIBC-FDTD method for coated conductors at oblique incidence[J]. Progress in Electromagnetics Research M, 2013, 30: 239-252. doi: 10.2528/PIERM13022512
    [8]
    Maloney J G, Smith G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 38-48. doi: 10.1109/8.123351
    [9]
    汪昕, 冯博文, 闫丽萍, 等. 复合材料薄层建模技术及电磁屏蔽效能评估[J]. 无线电工程, 2020, 50(12):1097-1101 doi: 10.3969/j.issn.1003-3106.2020.12.015

    Wang Xin, Feng Bowen, Yan Liping, et al. FDTD modeling of thin-layer composite slab and its application to shielding effectiveness prediction[J]. Radio Engineering, 2020, 50(12): 1097-1101 doi: 10.3969/j.issn.1003-3106.2020.12.015
    [10]
    杨利霞, 马辉, 施卫东, 等. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析[J]. 物理学报, 2013, 62:034102 doi: 10.7498/aps.62.034102

    Yang Lixia, Ma Hui, Shi Weidong, et al. Finite difference time domain analysis on electromagnetic scattering characteristic of plasma thin layer based on surface impedance boundary condition method[J]. Acta Physica Sinica, 2013, 62: 034102 doi: 10.7498/aps.62.034102
    [11]
    李瀚宇, 周海京, 廖成. JEMS-FDTD超大规模并行计算测试[J]. 强激光与粒子束, 2011, 23(11):3003-3006 doi: 10.3788/HPLPB20112311.3003

    Li Hanyu, Zhou Haijing, Liao Cheng. Parallel performance test of JEMS-FDTD on massively parallel processor[J]. High Power Laser and Particle Beams, 2011, 23(11): 3003-3006 doi: 10.3788/HPLPB20112311.3003
    [12]
    Li Hanyu, Zhou Haijing, Liu Yang, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//2014 International Symposium on Electromagnetic Compatibility. 2014: 229-233.
    [13]
    李瀚宇, 周海京, 廖成. 时域全波电磁计算程序JEMS-FDTD在复杂电磁环境研究中的应用[J]. 强激光与粒子束, 2014, 26:073213 doi: 10.3788/HPLPB20142607.73213

    Li Hanyu, Zhou Haijing, Liu Yang. Application of JEMS-FDTD in complicated electromagnetic environment study[J]. High Power Laser and Particle Beams, 2014, 26: 073213 doi: 10.3788/HPLPB20142607.73213
    [14]
    鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在飞机HIRF仿真中的应用[J]. 强激光与粒子束, 2017, 29:103204 doi: 10.11884/HPLPB201729.170175

    Bao Xianfeng, Li Hanyu, Wu Yueqian, et al. Application of JEMS-FDTD in high intensity radiation field simulation on aircraft[J]. High Power Laser and Particle Beams, 2017, 29: 103204 doi: 10.11884/HPLPB201729.170175
    [15]
    鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在电磁脉冲区域传播数值模拟中的应用[J]. 强激光与粒子束, 2019, 31:103213 doi: 10.11884/HPLPB201931.190200

    Bao Xianfeng, Li Hanyu, Wu Yueqian, et al. Application of JEMS-FDTD in EMP regional propagation simulation[J]. High Power Laser and Particle Beams, 2019, 31: 103213 doi: 10.11884/HPLPB201931.190200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (74) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return