Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Pan Yingjin, Xiong Yiming, Li Zi, et al. Investigation of bipolar pulse source based on half-bridge structure[J]. High Power Laser and Particle Beams, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329
Citation: Pan Yingjin, Xiong Yiming, Li Zi, et al. Investigation of bipolar pulse source based on half-bridge structure[J]. High Power Laser and Particle Beams, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329

Investigation of bipolar pulse source based on half-bridge structure

doi: 10.11884/HPLPB202436.230329
  • Received Date: 2023-09-22
  • Accepted Date: 2023-11-29
  • Rev Recd Date: 2023-11-29
  • Available Online: 2023-12-02
  • Publish Date: 2024-01-12
  • To meet the application requirements of pulsed electric field ablation and solve the problem of uneven distribution of unipolar pulse electric field, a bipolar submicrosecond high voltage pulse power supply with high repetition rate and nanosecond front based on the main circuit of half-bridge structure was developed. The pulse power supply is provided by the FPGA control signal, after amplifying the control signal by the driver chip, the photocoupler is used to drive multiple SiC MOSFETs. The drive circuit requires less components, its signal control timing is simple, and it can provide negative voltage bias, so that the switch tube is reliably turned off, which improves the anti-electromagnetic interference ability of the circuit, guranteeing stable operation of the power supply. Through resistance load experiment, the influence of different gate resistors on the driving voltage is compared and analyzed. The shorter the driving voltage rise time, the faster the bipolar high voltage pulse front is. The experimental results show that the designed high-frequency bipolar pulse power supply can stably generate repetitive bipolar nanosecond pulses on 100 Ω pure resistive load. The output voltage is adjustable from 0 to ±4 kV, the pulse width is adjustable from 0.2 μs to 1.0 μs, the phase delay between positive and negative pulses is adjustable from 0 to 1 ms, and the rising edge and falling edge are between 60 ns and 150 ns. The design structure of the bipolar pulse source circuit is compact, which can meet the application parameter requirements.
  • loading
  • [1]
    康少芬, 张帅, 陈晓晓, 等. 纳秒脉冲介质阻挡放电等离子体氮还原合成氨的研究[J]. 高电压技术, 2021, 47(1):368-375 doi: 10.13336/j.1003-6520.hve.20200231

    Kang Shaofen, Zhang Shuai, Chen Xiaoxiao, et al. Study on reduction of nitrogen to ammonia by nanosecond pulse dielectric barrier discharge plasma[J]. High Voltage Engineering, 2021, 47(1): 368-375 doi: 10.13336/j.1003-6520.hve.20200231
    [2]
    吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503 doi: 10.19595/j.cnki.1000-6753.tces.181732

    Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503 doi: 10.19595/j.cnki.1000-6753.tces.181732
    [3]
    Yu Weixin, Kong Fei, Dong Pan, et al. Depositing chromium oxide film on alumina ceramics enhances the surface flashover performance in vacuum via PECVD[J]. Surface and Coatings Technology, 2021, 405: 126509. doi: 10.1016/j.surfcoat.2020.126509
    [4]
    于维鑫, 朱文超, 程晓, 等. 纳秒脉冲等离子体合成射流激励器的流场特性分析[J]. 气体物理, 2021, 6(2):38-45 doi: 10.19527/j.cnki.2096-1642.0821

    Yu Weixin, Zhu Wenchao, Cheng Xiao, et al. Analysis of flow field of nanosecond pulsed plasma synthetic jet[J]. Physics of Gases, 2021, 6(2): 38-45 doi: 10.19527/j.cnki.2096-1642.0821
    [5]
    陈新华, 孙军辉, 殷胜勇, 等. 脉冲电场与生物医药技术的交叉及其对肿瘤治疗模式的改变[J]. 高电压技术, 2014, 40(12):3746-3754 doi: 10.13336/j.1003-6520.hve.2014.12.013

    Chen Xinhua, Sun Junhui, Yin Shengyong, et al. Interaction of pulsed electric field and biomedicine technology and the influence on solid tumor therapy[J]. High Voltage Engineering, 2014, 40(12): 3746-3754 doi: 10.13336/j.1003-6520.hve.2014.12.013
    [6]
    Rolong A, Rubinsky B, Davalos R V. Tissue ablation by irreversible electroporation//Miklavčič D. Handbook of electroporation[M]. Cham: Springer, 2017: 707-721.
    [7]
    Rao Junfeng, Zhu Yicheng, Wang Yonggang, et al. Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175. doi: 10.1109/TPS.2020.3013292
    [8]
    姚陈果, 宁郡怡, 刘红梅, 等. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1):115-124 doi: 10.19595/j.cnki.1000-6753.tces.181719

    Yao Chenguo, Ning Junyi, Liu Hongmei, et al. Study of electroporation effect of different size tumor cells targeted by micro-nanosecond pulsed electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124 doi: 10.19595/j.cnki.1000-6753.tces.181719
    [9]
    米彦, 姚陈果, 李成祥, 等. 基于场-路复合模型的细胞内外膜跨膜电位时频特性[J]. 电工技术学报, 2011, 26(2):14-20,33 doi: 10.19595/j.cnki.1000-6753.tces.2011.02.003

    Mi Yan, Yao Chenguo, Li Chengxiang, et al. Time-frequency characteristics of transmembrane potentials on cellular inner and outer membranes based on dielectric-circuit compound model[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 14-20,33 doi: 10.19595/j.cnki.1000-6753.tces.2011.02.003
    [10]
    Beebe S J, Fox P M, Rec L J, et al. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells[J]. FASEB Journal, 2003, 17(9): 1493-1495.
    [11]
    Beebe S J, Fox P M, Rec L J, et al. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 286-292. doi: 10.1109/TPS.2002.1003872
    [12]
    Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11: 115012. doi: 10.1088/1367-2630/11/11/115012
    [13]
    Schoenbach K H, Beebe S J, Buescher E S. Intracellular effect of ultrashort electrical pulses[J]. Bioelectromagnetics, 2001, 22(6): 440-448. doi: 10.1002/bem.71
    [14]
    Tang Jingchao, Yin Hairong, Ma Jialu, et al. Electroporation of KcsA membrane protein system under nanosecond pulsed electric field: a molecular dynamics simulation[J]. Vacuum Electronics, 2019(1): 14-20.
    [15]
    Canacsinh H, Redondo L M, Silva J F. Marx-type solid-state bipolar modulator topologies: performance comparison[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2603-2610. doi: 10.1109/TPS.2012.2190944
    [16]
    葛劲伟, 姜松, 饶俊峰, 等. 全固态高压双极性方波脉冲叠加器的研制[J]. 高电压技术, 2019, 45(4):1305-1312 doi: 10.13336/j.1003-6520.hve.20190329028

    Ge Jinwei, Jiang Song, Rao Junfeng, et al. Development of all-solid-state bipolar pulse adder with high voltage rectangular wave pulses output[J]. High Voltage Engineering, 2019, 45(4): 1305-1312 doi: 10.13336/j.1003-6520.hve.20190329028
    [17]
    石小燕, 任先文, 刘平, 等. 基于MOSFET的高重复频率高压脉冲源设计[J]. 强激光与粒子束, 2019, 31:040022 doi: 10.11884/HPLPB201931.180321

    Shi Xiaoyan, Ren Xianwen, Liu Ping, et al. Design of high repetition rate and high voltage pulse generator based on metal oxide semiconductor field-effect transistor[J]. High Power Laser and Particle Beams, 2019, 31: 040022 doi: 10.11884/HPLPB201931.180321
    [18]
    Rocha L L, Silva J F, Redondo L M. Seven-level unipolar/bipolar pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2060-2064. doi: 10.1109/TPS.2016.2519269
    [19]
    Chen J F, Lin J N, Ai T H. The techniques of the serial and paralleled IGBTs[C]//Proceedings of the 22nd International Conference on Industrial Electronics, Control, and Instrumentation. 1996: 999-1004.
    [20]
    Chen Xiaotian, Yu Lin, Jiang Tingting, et al. A high-voltage solid-state switch based on series connection of IGBTs for PEF applications[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2328-2334. doi: 10.1109/TPS.2017.2713781
    [21]
    Kopacz R, Peftitsis D, Rabkowski J. Experimental study on fast-switching series-connected SiC MOSFETs[C]//2017 19th European Conference on Power Electronics and Applications. 2017: P. 1-P. 10.
    [22]
    窦好刚, 廖源, 赵培聪. 高功率IGBT组件在雷达发射机中的应用[J]. 现代雷达, 2008, 30(2):85-87 doi: 10.3969/j.issn.1004-7859.2008.02.023

    Dou Haogang, Liao Yuan, Zhao Peicong. Application of high power IGBT modules in radar transmitter[J]. Modern Radar, 2008, 30(2): 85-87 doi: 10.3969/j.issn.1004-7859.2008.02.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (262) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return