Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006. doi: 10.11884/HPLPB202436.230148
Citation: Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006. doi: 10.11884/HPLPB202436.230148

Investigation of a compact solid-state Marx generator

doi: 10.11884/HPLPB202436.230148
  • Received Date: 2023-05-28
  • Accepted Date: 2023-09-08
  • Rev Recd Date: 2023-08-16
  • Available Online: 2023-09-12
  • Publish Date: 2024-01-12
  • This paper proposes compact solid-state Marx generator based on half-bridge structure. In each stage, an NPN MOSFET as the charging switch and a PNP MOSFET as the discharging switch forms a half-bridge circuit, and both their gates and sources are short circuited so that they can be triggered with the same signal. Using many transformers with their primary windings in series, only one half-bridge circuit on the primary side is used to transfer both the driving power and control signals. Then all the charging switches and discharging switches are driven simultaneously, which greatly simplifies the structure and size of solid-state Marx generators and reduces costs. In this way, a 24-stage solid-state Marx generator prototype was built, and high-voltage square pulses of 10 kV, 1 kHz and 5 μs was obtained on a 10 kΩ resistive load. The feasibility of the scheme is verified, and the size of the main circuit is only 20 cm (length)×13 cm (width)×5.5 cm (height).
  • loading
  • [1]
    刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [2]
    Yu Feng, Sugai T, Tokuchi A, et al. Development of solid-state LTD module using silicon carbide MOSFETs[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5037-5041. doi: 10.1109/TPS.2019.2943702
    [3]
    周文鹏, 曾嵘, 赵彪, 等. 大容量全控型压接式IGBT和IGCT器件对比分析: 原理、结构、特性和应用[J]. 中国电机工程学报, 2022, 42(8):2940-2956

    Zhou Wenpeng, Zeng Rong, Zhao Biao, et al. Comparative analysis of large-capacity fully-controlled press-pack IGBT and IGCT: principle, structure, characteristics and application[J]. Proceedings of the CSEE, 2022, 42(8): 2940-2956
    [4]
    Li Tanyi, Zhan Qiwei, Chen Wenchao, et al. Hexahedron-based control volume finite element method for fully coupled nonlinear drift-diffusion transport equations in semiconductor devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(6): 2965-2978. doi: 10.1109/TMTT.2022.3162314
    [5]
    Li Xiang, Li Daohui, Chang Guiqin, et al. High-voltage hybrid IGBT power modules for miniaturization of rolling stock traction inverters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1266-1275. doi: 10.1109/TIE.2021.3059544
    [6]
    Chokhawala R S, Catt J, Kiraly L. A discussion on IGBT short-circuit behavior and fault protection schemes[J]. IEEE Transactions on Industry Applications, 1995, 31(2): 256-263. doi: 10.1109/28.370271
    [7]
    唐培伟, 李海峰, 于淼. 电子电气设备中的电路隔离技术分析[J]. 集成电路应用, 2022, 39(11):58-59

    Tang Peiwei, Li Haifeng, Yu Miao. Analysis of circuit isolation technology in electronic and electrical equipment[J]. Applications of IC, 2022, 39(11): 58-59
    [8]
    Rao Junfeng, Li Zi, Xia Kun, et al. An all solid-state repetitive high-voltage rectangular pulse generator based on magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1976-1982. doi: 10.1109/TDEI.2015.004956
    [9]
    饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332

    Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332
    [10]
    Wu Fan, Ge Hao, El-Refaie A M, et al. Partially-coupled d-q-0 components of magnetically-isolated FSCW IPM machines with open-end-winding drives[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1397-1407. doi: 10.1109/TIA.2020.2964251
    [11]
    Barnes M J, Wait G D, Figley C B. A FET based frequency and duty factor agile 6 kV pulse generator[C]//Twenty-First International Power Modulator Symposium, Conference. 1994: 97-100.
    [12]
    张睿, 饶俊峰, 李孜, 等. 一种调节Marx电源脉冲边沿的驱动电路[J]. 强激光与粒子束, 2022, 34:095011 doi: 10.11884/HPLPB202234.220011

    Zhang Rui, Rao Junfeng, Li Zi, et al. A driver circuit to adjust the pulse edges of Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 095011 doi: 10.11884/HPLPB202234.220011
    [13]
    饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31:125001 doi: 10.11884/HPLPB201931.19013

    Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001 doi: 10.11884/HPLPB201931.19013
    [14]
    Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586
    [15]
    Ryoo H J, Kim J S, Rim G H, et al. Current loop gate driver circuit for pulsed power supply based on semiconductor switches[C]//2007 16th IEEE International Pulsed Power Conference. 2007: 1622-1626.
    [16]
    Song S H, Ryoo H J. Solid-state bipolar pulsed power modulator for high-efficiency production of plasma activated water[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10634-10642. doi: 10.1109/TIE.2020.3031523
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (418) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return