Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Xu Ce, Liu Hui, Liu Jianhua, et al. Development of conduction-cold high temperature superconductingmagnet for high power microwave devices[J]. High Power Laser and Particle Beams, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334
Citation: Xu Ce, Liu Hui, Liu Jianhua, et al. Development of conduction-cold high temperature superconductingmagnet for high power microwave devices[J]. High Power Laser and Particle Beams, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334

Development of conduction-cold high temperature superconductingmagnet for high power microwave devices

doi: 10.11884/HPLPB202436.230334
  • Received Date: 2023-06-15
  • Accepted Date: 2023-12-24
  • Rev Recd Date: 2023-12-18
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • To compact and miniaturize the high-power microwave system and reduce the energy consumption of the magnet system, the superconducting magnet which generates the guiding magnetic field is studied and designed. The magnet is composed of rare earth barium copper oxide coil pancakes. In the cryogenic system, four air-cooled Stirling cryocoolers are used to cool down the superconducting magnet. To be suitable for vehicle environments and reduce the heat leakage, a new cone bearing structure of non-metallic material is adopted as the load-bearing structure of the magnet. And the load-bearing situation of the magnet structure under the general vehicle environment is analyzed by the simulation. The superconducting magnetic field in the uniform region reaches 4 T when the current is 77.49 A in the range of 40-50 K. The energy consumption of the whole system is 80% lower than the traditional technology. The experimental results show that the upper temperature limit of the high temperature superconducting magnet (HTS) is 48.9 K.
  • loading
  • [1]
    Benford J N, Cooksey N J, Levine J S, et al. Techniques for high power microwave sources at high average power[J]. IEEE Transactions on Plasma Science, 1993, 21(4): 388-392. doi: 10.1109/27.234566
    [2]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007.
    [3]
    周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [4]
    王荟达. C波段低磁场高效率相对论返波管研究[D]. 北京: 清华大学, 2021: 1-10

    Wang Huidao. Research on a C-band high-efficiency relativistic backward-wave oscillator with low-magnetic-field operation[D]. Beijing: Tsinghua University, 2021: 1-10
    [5]
    胡祥刚, 宋玮, 李兰凯, 等. 用于高功率微波器件的永磁体的设计和测试[J]. 强激光与粒子束, 2016, 28:033017 doi: 10.11884/HPLPB201628.033017

    Hu Xianggang, Song Wei, Li Lankai, et al. Design and test of permanent magnet used in high power microwave devices[J]. High Power Laser and Particle Beams, 2016, 28: 033017 doi: 10.11884/HPLPB201628.033017
    [6]
    陈昌华, 刘国治. 相对论返波管导论[M]. 北京: 科学出版社, 2021

    Chen Changhua, Liu Gouzhi. Introduction to relativistic backward wave oscillator[M]. Beijing: Science Press, 2021) ) .
    [7]
    Lemke R W, Clark M C, Marder B M. Theoretical and experimental investigation of a method for increasing the output power of a microwave tube based on the split-cavity oscillator[J]. Journal of Applied Physics, 1994, 75(10): 5423-5432. doi: 10.1063/1.355698
    [8]
    Chen Shunzhong, Dai Yinming, Zhao Baozhi, et al. Development of an 8-T conduction-cooled superconducting magnet with 300-mm warm bore for material processing application[J]. IEEE Transactions on Applied Superconductivity, 2014, 24: 4701605.
    [9]
    Xiao R Z, Zhang X W, Zhang L J, et al. Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator[J]. Laser and Particle Beams, 2010, 28(3): 505-511. doi: 10.1017/S0263034610000509
    [10]
    陈昌华, 刘国治, 宋志敏, 等. 引导磁场对相对论返波管微波功率的影响[J]. 强激光与粒子束, 2000, 12(6):745-748

    Chen Changhua, Liu Gouzhi, Song Zhimin, et al. Effects of axial guiding magnetic field on microwave power of relativistic backward oscillators[J]. High Power Laser and Particle Beams, 2000, 12(6): 745-748
    [11]
    严余军. 永磁包装高效率相对论返波管设计与研究[D]. 绵阳: 西南科技大学, 2021: 1-10

    Yan Yujun. Design and research of high-efficiency relativistic backward wave oscillator for permanent magnet packaging[D]. Mianyang: Southwest University of Science and Technology, 2021: 1-10
    [12]
    Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
    [13]
    陈顺中, 王秋良, 孙万硕, 等. 3T动物磁共振成像传导冷却超导磁体研究[J]. 电工技术学报, 2023, 38(4):879-888

    Chen Shunzhong, Wang Qiuliang, Sun Wanshuo, et al. The study of a 3T conduction-cooled superconducting magnet for animal magnetic resonance imaging[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 879-888)
    [14]
    Ma Qiaosheng, Li Zhenghong, Lu Chaozheng, et al. Efficient operation of an oversized backward-wave oscillator[J]. IEEE Transactions on Plasma Science, 2011, 39(5): 1201-1203. doi: 10.1109/TPS.2011.2123116
    [15]
    Song W, Chen C H, Sun J, et al. Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity[J]. Physics of Plasmas, 2012, 19: 103111. doi: 10.1063/1.4759164
    [16]
    Wang Qiuliang, Wang Chunzhong, Wang Hui, et al. Development of conduction-cooled superconducting magnet for baby imaging[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 726-731. doi: 10.1109/TASC.2010.2040154
    [17]
    倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法[J]. 物理学报, 2013, 62:020701 doi: 10.7498/aps.62.020701

    Ni Zhipeng, Wang Qiuliang, Yan Luguang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system[J]. Acta Physica Sinica, 2013, 62: 020701 doi: 10.7498/aps.62.020701
    [18]
    Zhang Zili, Zhou Benzhe, Liu Jianhua, et al. Engineering-based design and fabrication procedure for mid-temperature REBCO magnets accommodating the strong Ic anisotropy[J]. Superconductivity, 2022, 1: 100005. doi: 10.1016/j.supcon.2022.100005
    [19]
    Stavrev S, Grilli F, Dutoit B, et al. Comparison of numerical methods for modeling of superconductors[J]. IEEE Transactions on Magnetics, 2002, 38(2): 849-852. doi: 10.1109/20.996219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (445) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return