| Citation: | Yin Ruonan, Xue Bo, Zhang Jinming, et al. Measurement of two-dimensional high-frequency motion displacement of piezoelectric shear stack using atomic force microscope tapping trajectories[J]. High Power Laser and Particle Beams, 2024, 36: 089003. doi: 10.11884/HPLPB202436.230351 |
| [1] |
李国会, 李国荣, 徐宏来, 等. 抗拉可压型压电陶瓷性能测试及疲劳试验[J]. 强激光与粒子束, 2023, 35:101007 doi: 10.11884/HPLPB202335.230099
Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007 doi: 10.11884/HPLPB202335.230099
|
| [2] |
Uchino K. The development of piezoelectric materials and the new perspective[M]//Uchino K. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Duxford, United Kingdom: Woodhead Publishing, 2017: 1-92.
|
| [3] |
高志山, 王若言, 成晓强. 压电陶瓷装置微位移的光学测量与控制技术[J]. 电光与控制, 2016, 23(8):1-5 doi: 10.3969/j.issn.1671-637X.2016.08.001
Gao Zhishan, Wang Ruoyan, Cheng Xiaoqiang. Optical measurement and control of micro displacement for a piezoelectric device[J]. Electronics Optics & Control, 2016, 23(8): 1-5 doi: 10.3969/j.issn.1671-637X.2016.08.001
|
| [4] |
Ho S T, Jan S J. A piezoelectric motor for precision positioning applications[J]. Precision Engineering, 2016, 43: 285-293. doi: 10.1016/j.precisioneng.2015.08.007
|
| [5] |
李欣, 王晓东, 罗怡, 等. 激光陀螺稳频器压电陶瓷片微位移自动化测量[J]. 机电工程技术, 2020, 49(9):89-92,160 doi: 10.3969/j.issn.1009-9492.2020.09.030
Li Xin, Wang Xiaodong, Luo Yi, et al. Micro-displacement automatic measurement for piezoelectric ceramic slices of laser gyroscope frequency stabilizer[J]. Mechanical & Electrical Engineering Technology, 2020, 49(9): 89-92,160 doi: 10.3969/j.issn.1009-9492.2020.09.030
|
| [6] |
Kim M, Moon W, Yoon E, et al. A new capacitive displacement sensor with high accuracy and long-range[J]. Sensors and Actuators A: Physical, 2006, 130/131: 135-141. doi: 10.1016/j.sna.2005.12.012
|
| [7] |
李慧鹏, 唐若祥, 吕亚宁, 等. 基于电容传感器的精密压电微位移系统研究[J]. 半导体光电, 2018, 39(1):146-150
Li Huipeng, Tang Ruoxiang, Lv Yaning, et al. Research on precision piezoelectric micro-displacement system based on capacitance sensor[J]. Semiconductor Optoelectronics, 2018, 39(1): 146-150
|
| [8] |
解晓雯, 严琪琪, 单声宇. 霍耳位移法测量压电陶瓷的压电系数[J]. 压电与声光, 2018, 40(3):362-365 doi: 10.11977/j.issn.1004-2474.2018.03.014
Xie Xiaowen, Yan Qiqi, Shan Shengyu. Measurement of transverse piezoelectric coefficient by hall displacement sensor[J]. Piezoelectrics & Acoustooptics, 2018, 40(3): 362-365 doi: 10.11977/j.issn.1004-2474.2018.03.014
|
| [9] |
于海娇. 双频激光干涉仪的应用研究综述[J]. 电子测试, 2022(8):124-126 doi: 10.3969/j.issn.1000-8519.2022.08.044
Yu Haijiao. Review of application research of dual frequency laser interferometer[J]. Electronic Test, 2022(8): 124-126 doi: 10.3969/j.issn.1000-8519.2022.08.044
|
| [10] |
徐胜, 石书丽, 高思田, 等. 剪切压电陶瓷块微位移测量及非线性修正[J]. 计量学报, 2016, 37(6):553-558 doi: 10.3969/j.issn.1000-1158.2016.06.01
Xu Sheng, Shi Shuli, Gao Sitian, et al. Measurement and nonlinear correction for micro-displacement of shear piezoceramics stack[J]. Acta Metrologica Sinica, 2016, 37(6): 553-558 doi: 10.3969/j.issn.1000-1158.2016.06.01
|
| [11] |
齐艳强, 赵晓丹, 李孟阳, 等. 压电陶瓷微位移的光干涉测量与控制系统[J]. 太原理工大学学报, 2018, 49(4):612-616
Qi Yanqiang, Zhao Xiaodan, Li Mengyang, et al. Optical interference measurement and control system of piezoelectric ceramic micro-displacement[J]. Journal of Taiyuan University of Technology, 2018, 49(4): 612-616
|
| [12] |
He Yang, Geng Yanquan, Yan Yongda, et al. Fabrication of nanoscale pits with high throughput on polymer thin film using AFM tip-based dynamic plowing lithography[J]. Nanoscale Research Letters, 2017, 12: 544. doi: 10.1186/s11671-017-2319-y
|
| [13] |
Hall D A. Review nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science, 2001, 36(19): 4575-4601. doi: 10.1023/A:1017959111402
|
| [14] |
Xue Bo, Brousseau E, Bowen C. Modelling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining[J]. International Journal of Mechanical Sciences, 2023, 243: 108048. doi: 10.1016/j.ijmecsci.2022.108048
|