Volume 36 Issue 8
Jul.  2024
Turn off MathJax
Article Contents
Zheng Qiong, Bi Liangjie, Shen Dagui, et al. Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109
Citation: Zheng Qiong, Bi Liangjie, Shen Dagui, et al. Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109

Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron

doi: 10.11884/HPLPB202436.240109
  • Received Date: 2024-03-27
  • Accepted Date: 2024-06-10
  • Rev Recd Date: 2024-06-10
  • Available Online: 2024-06-17
  • Publish Date: 2024-07-04
  • The high-efficiency mutual coupling phase locking of magnetron provides an effective technical solution for high-efficiency and high-power arrays based on electric vacuum oscillators. The introduction of the mutual coupling structure makes the mutual coupling magnetron establish a new resonant mode sequence, in which the mode satisfying the high-efficiency phase-locking of the mutual coupling magnetron is the desired phase-locking mode. However, the phase-locked mode is susceptible to the interference of adjacent modes in the mode sequence, resulting in unstable operation. In this paper, a method of regulating the mode distribution by combining the equivalent circuit with the eigenmode analysis is proposed. By regulating the frequency separation of the mode, the phase-locked mode can work in a single mode. At the same time, the matching resonance conditions of the magnetron working mode and the coupling field of the mutual coupling structure are established to realize efficient mutual coupling phase locking of the magnetron. To verify the effectiveness of the method, an efficient mutual coupling model based on S-band MW-level magnetron is designed, and the particle simulation of the phase-locked mode operating characteristics is carried out. The simulation results show that the mutual coupling model can work stably in the high-efficiency phase-locking modes: 0 phase difference mode and π phase difference mode. The locking frequency is about 2.545 GHz, which is close to the free oscillation frequency of the magnetron single tube. The output power of each magnetron is close to the output power of a single tube in free operation. The electronic efficiency is almost the same as that of a single tube, and the mutual coupling phase-locking efficiency reaches 99%, achieving high-efficiency phase-locking.
  • loading
  • [1]
    Trew R J. High-frequency solid-state electronic devices[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 638-649. doi: 10.1109/TED.2005.845862
    [2]
    Andreev A D. Computer simulations of frequency- and phase-locking of cavity magnetrons[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(12): 1501-1518. doi: 10.1080/09205071.2018.1452636
    [3]
    Chen Cheng, Huang Kama, Yang Yang. Microwave transmitting system based on four-way master-slave injection-locked magnetrons and horn arrays with suppressed sidelobes[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2416-2424. doi: 10.1109/TMTT.2018.2790924
    [4]
    Zhou Hao, Hu Jijun, Shi Jun, et al. Cascaded relativistic magnetron with phase-locked multiport extraction[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4854-4859. doi: 10.1109/TED.2023.3294455
    [5]
    Fu Wenjie, Yan Yang, Li Xiaoyun. Investigation of magnetron injection locking and cascaded locking by solid-state microwave power source[J] Journal of Microwave Power and Electromagnetic Energy, 2019, 53(3): 171-183.
    [6]
    Cruz E J, Hoff B W, Pengvanich P, et al. Experiments on peer-to-peer locking of magnetrons[J]. Applied Physics Letters, 2009, 95: 191503. doi: 10.1063/1.3262970
    [7]
    Adler R. A study of locking phenomena in oscillators[J]. Proceedings of the IRE, 1946, 34(6): 351-357. doi: 10.1109/JRPROC.1946.229930
    [8]
    Tahir I, Dexter A, Carter R. Frequency and phase modulation performance of an injection-locked CW magnetron[J]. IEEE Transactions on Electron Devices, 2006, 53(7): 1721-1729. doi: 10.1109/TED.2006.876268
    [9]
    Chen Xiaojie, Yu Ze, Lin Hang, et al. Improvements in a 20-kW phase-locked magnetron by anode voltage ripple suppression[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1879-1885. doi: 10.1109/TPS.2019.2956868
    [10]
    Liu Changjun, Huang Heping, Liu Zhengyu, et al. Experimental study on microwave power combining based on injection-locked 15-kW S-band continuous-wave magnetrons[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1291-1297. doi: 10.1109/TPS.2016.2565564
    [11]
    Chen Xiaojie, Yang Bo, Shinohara N, et al. A high-efficiency microwave power combining system based on frequency-tuning injection-locked magnetrons[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4447-4452. doi: 10.1109/TED.2020.3013510
    [12]
    Chen Xiaojie, Yang Bo, Shinohara N, et al. Low-noise dual-way magnetron power-combining system using an asymmetric H-plane tee and closed-loop phase compensation[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(4): 2267-2278. doi: 10.1109/TMTT.2021.3056550
    [13]
    Yang Bo, Chu Jie, Mitani T, et al. High-power simultaneous wireless information and power transfer system based on an injection-locked magnetron phased array[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(12): 1327-1330. doi: 10.1109/LMWC.2021.3104832
    [14]
    Huang Heping, Yang Bo, Shinohara N, et al. Coherent power combining of four-way injection-locked 5.8-GHz magnetrons based on a five-port hybrid waveguide combiner[J]. IEEE Transactions on Microwave Theory and Techniques, 2024.
    [15]
    谢文楷, 刘盛纲. 微波毫米波功率合成中的锁频和锁相[J]. 电子与信息学报, 1994, 16(4):416-422

    Xie Wenkai, Liu Shenggang. Phase and frequency locking of microwave and millimeter wave power combining[J]. Journal of Electronics & Information Technology, 1994, 16(4): 416-422
    [16]
    Cheng Renjie, Li Tianming, Wang Jiaoyin, et al. Multiport relativistic magnetron for phased array application[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1423-1428. doi: 10.1109/TED.2022.3144122
    [17]
    Liu Jiayang, Zha Hao, Shi Jiaru, et al. First demonstration and performance of X-band high-power magnetron with parallel cathodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3960-3965. doi: 10.1109/TED.2022.3177390
    [18]
    Liu Jiayang, Zha Hao, Shi Jiaru, et al. Power combining of dual X-band coaxial magnetrons based on peer-to-peer locking[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6518-6524. doi: 10.1109/TED.2021.3121225
    [19]
    Benford J, Sze H, Woo W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969-971. doi: 10.1103/PhysRevLett.62.969
    [20]
    Sze H, Smith R R, Benford J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235-241. doi: 10.1109/15.155835
    [21]
    Levine J S, Aiello N, Benford J, et al. Design and operation of a module of phase-locked relativistic magnetrons[J]. Journal of Applied Physics, 1991, 70(5): 2838-2848. doi: 10.1063/1.349347
    [22]
    Levine J S, Benford J, Sze H, et al. Strongly coupled relativistic magnetrons for phase-locked arrays[C]//Proceedings of the SPIE 1061, Microwave and Particle Beam Sources and Directed Energy Concepts. 1989.
    [23]
    Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563
    [24]
    王文祥. 微波工程技术[M]. 2版. 北京: 国防工业出版社, 2014

    Wang Wenxiang. Microwave engineering technology[M]. 2nd ed. Beijing: National Defense Industry Press, 2014
    [25]
    谢处方, 饶克谨, 杨显清, 等. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019

    Xie Chufang, Rao Kejin, Yang Xianqing, et al. Electromagnetic field and electromagnetic wave[M]. 5th ed. Beijing: Higher Education Press, 2019
    [26]
    Slater J C. Microwave electronics[J]. Reviews of Modern Physics, 1946, 18(4): 441-512. doi: 10.1103/RevModPhys.18.441
    [27]
    Slater J C. The phasing of magnetrons[M]. Cambridge, MA, RLE Tech. Rep. No. 35, 1947.
    [28]
    岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频[J]. 物理学报, 2013, 62:178401 doi: 10.7498/aps.62.178401

    Yue Song, Zhang Zhaochuan, Gao Dongping. Injection-locking of magnetrons with matched impedance[J]. Acta Physica Sinica, 2013, 62: 178401 doi: 10.7498/aps.62.178401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (714) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return