Turn off MathJax
Article Contents
Jia Yanqing, Du Yingchao, Huang Wenhui. Slow drift suppression of continuous laser carrier synchronization system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230353
Citation: Jia Yanqing, Du Yingchao, Huang Wenhui. Slow drift suppression of continuous laser carrier synchronization system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230353

Slow drift suppression of continuous laser carrier synchronization system

doi: 10.11884/HPLPB202436.230353
  • Received Date: 2023-10-16
  • Accepted Date: 2024-03-08
  • Rev Recd Date: 2024-03-08
  • Available Online: 2024-03-15
  • The high-precision synchronization system is one of the key factors for the accelerator to generate high-quality beams. Based on the existing continuous laser carrier synchronization system of Tsinghua University, this paper analyzes the long-term drift of the reference microwave signal phase difference between different receiving ends, that is, the slow drift of the synchronization system. An electro-optic modulator (EOM) bias voltage control method based on the amplitude of the reference microwave signal at the receiving end was proposed to suppress the slow drift. After adopting this method, the slow drift of the L-band (1300 MHz) synchronization system of Tsinghua University’s VHF band photocathode electron gun test platform was suppressed to 10.45 fs@24 h, and the slow drift of the S-band (2 856 MHz) synchronization system of Tsinghua University’s Thomson Scattering Facility (TTX) was suppressed to 10.53 fs@24 h. Moreover, this method can make the entire synchronization system work in a room temperature environment, effectively improving the adaptability of the synchronization system to the working environment temperature.
  • loading
  • [1]
    Şafak K, Droste S, Cheng H P H, et al. A pulsed-optical timing distribution system for LCLS-II[C]//CLEO: Science and Innovations 2020. 2020.
    [2]
    Wilcox R, Byrd J M, Doolittle L, et al. Stable transmission of radio frequency signals on fiber links using interferometric delay sensing[J]. Optics Letters, 2009, 34(20): 3050-3052. doi: 10.1364/OL.34.003050
    [3]
    Staples J W, Byrd J, Doolittle L, et al. A femtosecond-level fiber-optics timing distribution system using frequency-offset interferometry[C]//Proceedings of LINAC08. 2008: 1078-1080.
    [4]
    Huang G, Doolittle L R, Staples J W, et al. Signal processing for high precision phase measurements[C]//Proceedings of BIW10. 2010: 375-378.
    [5]
    Lin Zhenyang, Du Yingchao, Huang Wenhui, et al. A low level radio frequency system drift compensation technique by time-multiplexing pick-up/reference signals[J]. The Review of Scientific Instruments, 2019, 90: 114711. doi: 10.1063/1.5116755
    [6]
    Chen Wenfen, Wei Zhengjun, Li Guo, et al. An autobias control system for the electro—optic modulator used in a quantum key distribution system[J]. Chinese Physics B, 2014, 23: 080304. doi: 10.1088/1674-1056/23/8/080304
    [7]
    Tang Yanfeng, Li Hongzuo, Zhan Weida, et al. Research of auto control about biasvoltage of high speed and power electro-optic modulator[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. 2011: V4-118-V4-121.
    [8]
    Sun Jiazheng, Xu Borui, Sun Wenhui, et al. The effect of bias and frequency on amplitude to phase conversion of photodiodes[J]. IEEE Photonics Journal, 2020, 12: 5502010.
    [9]
    刘子溪, 曾成, 夏金松. 高线性度电光调制器研究进展[J]. 中国激光, 2022, 49:1206001 doi: 10.3788/CJL202249.1206001

    Liu Zixi, Zeng Cheng, Xia Jinsong. Research progress on high-linearity electro-optical modulators[J]. Chinese Laser Press, 2022, 49: 1206001 doi: 10.3788/CJL202249.1206001
    [10]
    Huang Gang, Jin Yang, Du Qiang, et al. Integrated phase reference distribution LLRF and laser synchronization system[Z]. LLRF2015 Shanghai, China.
    [11]
    Knott M, Gurd D, Lewis S, et al. EPICS: A control system software co-development success story[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 352(1/2): 486-491.
    [12]
    Thuot M E, Clausen M, Dalesio L R, et al. The success and the future of EPICS[C]//18th International Linear Accelerator Conference (Linac 96). 1996.
    [13]
    Lange R. Epics software developers meet at ITER[EB/OL]. (2017-10-02). https://www.iter.org/newsline/-/2821.
    [14]
    Dalesio L, Dohan D, Shen G, et al. Distributed information services for control systems[J]. Proceedings of ICALEPCS2013. 2013.
    [15]
    杨晋. 百飞秒同步系统研究[D]. 北京: 清华大学, 2016

    Yang Jin. Research on hundred femtoseconds synchronization system for accelerator[D]. Beijing: Tsinghua University, 2016
    [16]
    杜强. 锁模脉冲激光稳频技术与超快X射线源定时系统研究[D]. 北京: 清华大学, 2016

    Du Qiang. Study on mode-locked laser frequency stabilization and ultrafast X-ray source timing system[D]. Beijing: Tsinghua University, 2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (33) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return