Volume 36 Issue 6
May  2024
Turn off MathJax
Article Contents
Jin Yushuang, Wang Dongjun, Zhang Yuan, et al. A frequency selective surface absorber for electromagnetic shielding in enclosed cabins[J]. High Power Laser and Particle Beams, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446
Citation: Jin Yushuang, Wang Dongjun, Zhang Yuan, et al. A frequency selective surface absorber for electromagnetic shielding in enclosed cabins[J]. High Power Laser and Particle Beams, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446

A frequency selective surface absorber for electromagnetic shielding in enclosed cabins

doi: 10.11884/HPLPB202436.230446
  • Received Date: 2023-12-22
  • Accepted Date: 2024-03-12
  • Rev Recd Date: 2024-04-25
  • Available Online: 2024-05-08
  • Publish Date: 2024-05-11
  • This article proposes a phase compensation method for oblique incident electromagnetic wave to improve the angular stability of frequency selective surface (FSS) absorber. By using this method, an ultra-wideband, incident angle-stable FSS absorber-based electromagnetic shield structure is designed to reduce the electromagnetic environment level in enclosed cabins. The proposed single-layer FSS absorber achieves excellent angular stability within an ultrawide band by intentionally using different dielectric layers to compensate for the electromagnetic wave phase at high and low frequency bands respectively, and by designing a novel FSS cross unit cell featuring with gradually width-varying, slotted and top-loaded metallic strips. Simulation results reveal that the proposed absorber achieve over 90% absorption in the frequency range of 3.9−25.8 GHz, with a fractional bandwidth of 147.5%. In the frequency range of 4.7−22.1 GHz (129.9%), the angular stability of two polarizations reaches 30° with 90% absorptivity, and the absorptivity retains over 80% even when the incident angle increases up to 50°. The good agreement between the measurement and simulation results has verified the effectiveness of the design.
  • loading
  • [1]
    秦风, 蔡金良, 曹学军, 等. 车辆强电磁脉冲环境适应性研究[J]. 强激光与粒子束, 2019, 31:103203 doi: 10.11884/HPLPB201931.190233

    Qin Feng, Cai Jinliang, Cao Xuejun, et al. Investigation on the adaptability of vehicle in high-intensity electromagnetic pulse environment[J]. High Power Laser and Particle Beams, 2019, 31: 103203 doi: 10.11884/HPLPB201931.190233
    [2]
    李克训, 马江将, 张泽奎, 等. 环氧树脂基碳纳米复合电磁屏蔽材料研究[J]. 强激光与粒子束, 2019, 31:103204 doi: 10.11884/HPLPB201931.190102

    Li Kexun, Ma Jiangjiang, Zhang Zekui, et al. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31: 103204 doi: 10.11884/HPLPB201931.190102
    [3]
    张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33:053005 doi: 10.11884/HPLPB202133.210044

    Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053005 doi: 10.11884/HPLPB202133.210044
    [4]
    沈宁, 闫丽萍, 谷智渊, 等. 频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析[J]. 强激光与粒子束, 2021, 33:053006 doi: 10.11884/HPLPB202133.210043

    Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006 doi: 10.11884/HPLPB202133.210043
    [5]
    Sun Zihan, Yan Liping, Zhao Xiang, et al. An ultrawideband frequency selective surface absorber with high polarization-independent angular stability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 789-793. doi: 10.1109/LAWP.2022.3225582
    [6]
    Zhang Chonghuan, Liu Siyuan, Ni Haizhi, et al. An angle-stable ultra-wideband single-layer frequency selective surface absorber[J]. Electronics, 2023, 12: 3776. doi: 10.3390/electronics12183776
    [7]
    强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222 doi: 10.11884/HPLPB201931.190210

    Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210
    [8]
    Jia Yuxin, Zhai Huiqing, Guo Chaozong, et al. A dual-band composite frequency selective rasorber with broadband absorption performance[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 1992-1996. doi: 10.1109/LAWP.2023.3271462
    [9]
    Fan Yudi, Li Da, Ma Hanzhi, et al. Ultrawideband dual-polarized frequency-selective absorber with tunable reflective notch[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2855-2860. doi: 10.1109/TAP.2023.3239161
    [10]
    Zhang Binchao, Jin Cheng, Shen Zhongxiang. Low-profile broadband absorber based on multimode resistor-embedded metallic strips[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 835-843. doi: 10.1109/TMTT.2019.2956933
    [11]
    曹文博, 麻晢乂培, 黄小忠, 等. 基于单层频率选择表面的轻质宽频吸波体设计[J]. 电子元件与材料, 2022, 41(2):180-185

    Cao Wenbo, Ma Zheyipei, Huang Xiaozhong, et al. Design of lightweight broadband absorber based on single-layer frequency selective surface[J]. Electronic Components and Materials, 2022, 41(2): 180-185
    [12]
    Sambhav S, Ghosh J, Singh A K. Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1333-1340. doi: 10.1109/TEMC.2021.3058583
    [13]
    Zhang Yufei, Yang Wenrong, Li Xiaonan, et al. Design and analysis of a broadband microwave metamaterial absorber[J]. IEEE Photonics Journal, 2023, 15: 4600810.
    [14]
    Yao Zhixin, Xiao Shaoqiu, Jiang Zhiguo, et al. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 591-595. doi: 10.1109/LAWP.2020.2972919
    [15]
    Lim D, Lim S. Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1887-1891. doi: 10.1109/LAWP.2019.2932399
    [16]
    Luo Guoqing, Yu Weiliang, Yu Yufeng, et al. A three-dimensional design of ultra-wideband microwave absorbers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(10): 4206-4215. doi: 10.1109/TMTT.2020.3011437
    [17]
    Shi Ting, Jin Lei, Han Lei, et al. Dispersion-engineered, broadband, wide-angle, polarization-independent microwave metamaterial absorber[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 229-238. doi: 10.1109/TAP.2020.3001673
    [18]
    Ma Zheyipei, Jiang Chao, Cao Wenbo, et al. An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9376-9384. doi: 10.1109/TAP.2022.3177490
    [19]
    Rao Tingli, Yu Shixing, Shi Rongyang, et al. A dielectric matching layer loaded frequency selective rasorber with enhanced angular stabilities[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(7): 1552-1556. doi: 10.1109/LAWP.2023.3250844
    [20]
    Yao Zhixin, Xiao Shaoqiu, Li Yan, et al. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 7276-7281. doi: 10.1109/TAP.2022.3149594
    [21]
    Zhao Yutong, Chen Biao, Wu Bian. Miniaturized periodicity broadband absorber with via-based hybrid metal-graphene structure for large-angle RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2832-2840. doi: 10.1109/TAP.2021.3125384
    [22]
    Munk B A, Munk P, Pryor J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(1): 186-193. doi: 10.1109/TAP.2006.888395
    [23]
    Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491
    [24]
    Kazemzadeh A. Nonmagnetic ultrawideband absorber with optimal thickness[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(1): 135-140. doi: 10.1109/TAP.2010.2090481
    [25]
    Parameswaran A, Ovhal A A, Kundu D, et al. A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1758-1766. doi: 10.1109/TEMC.2022.3196406
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (699) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return