Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Huang Nuoci, Yan Eryan, Yang Hao, et al. Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation[J]. High Power Laser and Particle Beams, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372
Citation: Huang Nuoci, Yan Eryan, Yang Hao, et al. Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation[J]. High Power Laser and Particle Beams, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372

Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation

doi: 10.11884/HPLPB202436.230372
  • Received Date: 2023-10-25
  • Accepted Date: 2024-03-22
  • Rev Recd Date: 2024-03-22
  • Available Online: 2024-03-28
  • Publish Date: 2024-02-29
  • This study aims to address the issue of the rapidly increasing quantity of space debris by investigating the feasibility of active debris removal by strong electromagnetic irradiation. A multi-layer insulation structure was employed as a typical model for hazardous space debris, and feasibility validation experiments were conducted in a complex physical environment incorporating multiple environmental factors under strong electromagnetic irradiation in the S-band and vacuum conditions. The experimental results demonstrate that, in a vacuum environment at the order of 10−3 Pa, strong electromagnetic pulses interact with the multi-layer insulation structure, triggering discharge phenomena and generating plasma, accompanied by changes in macroscopic dynamic characteristics. Through observation and analysis, possible physical processes were explored, including strong field breakdown leading to point discharge in materials, surface flashover causing mesh discharge and coating to damage, particle absorption of microwave energy resulting in material deformation or expansion, as well as plasma ablation leading to material destruction. This study provides important technical support for the active removal of hazardous space debris using strong electromagnetic irradiation.
  • loading
  • [1]
    吴冀川, 赵剑衡, 黄元杰, 等. 基于脉冲激光的空间碎片移除技术: 综述与展望[J]. 强激光与粒子束, 2022, 34:011006 doi: 10.11884/HPLPB202234.210334

    Wu Jichuan, Zhao Jianheng, Huang Yuanjie, et al. Removal of space debris by pulsed laser: Overview and future perspective[J]. High Power Laser and Particle Beams, 2022, 34: 011006 doi: 10.11884/HPLPB202234.210334
    [2]
    Kitamura S. Large space debris reorbiter using ion beam irradiation[C]//The 61st International Astronautical Federation. 2010: 725-735.
    [3]
    Aslanov V S, Ledkov A S. Dynamics and control of space debris during its contactless ion beam assisted removal[J]. Journal of Physics: Conference Series, 2020, 1705: 012006. doi: 10.1088/1742-6596/1705/1/012006
    [4]
    Ishige Y, Kawamoto S, Kibe S. Study on electrodynamic tether system for space debris removal[J]. Acta Astronautica, 2004, 55(11): 917-929. doi: 10.1016/j.actaastro.2004.04.015
    [5]
    Andrenucci M, Pergola P, Ruggiero A, et al. Active removal of space debris - expanding foam application for active debris removal[R]. Affiliation: European Space Agency, Advanced Concepts Team, 2011.
    [6]
    Bennett J C, Sang J, Smith C H, et al. Accurate orbit predictions for debris orbit manoeuvre using ground-based lasers[J]. Advances in Space Research, 2013, 52(11): 1876-1887. doi: 10.1016/j.asr.2013.08.029
    [7]
    Elizabeth S. Spacecraft materials development programs for thermal control coatings and space environmental testing[J]. Solar Energy Mater Solar Cells, 2000, 7(1): 73-83.
    [8]
    李鹏, 肖泽娟, 程惠尔. 空间多层打孔隔热材料热分析数值方法研究[J]. 中国空间科学技术, 2006, 26(5):17-20,36

    Li Peng, Xiao Zejuan, Cheng Huier. Numerical model study of thermal analysis on multilayer perforated insulation material in orbit[J]. Chinese Space Science and Technology, 2006, 26(5): 17-20,36
    [9]
    赵一搏, 杨汝平, 邱日尧, 等. 多层隔热结构研究进展[J]. 宇航材料工艺, 2013, 43(4):29-34

    Zhao Yibo, Yang Ruping, Qiu Riyao, et al. Recent progress on multi-layer insulation structures[J]. Aerospace Materials & Technology, 2013, 43(4): 29-34
    [10]
    李尧. 真空条件下航天器热控层材料的电磁辐照效应研究[D]. 北京: 华北电力大学, 2022

    Li Yao. Study on electromagnetic radiation effect of thermal control layer in a vacuum[D]. Beijing: North China Electric Power University, 2022
    [11]
    元光. 场发射理论研究进展[J]. 真空电子技术, 2012(6):30-34

    Yuan Guang. Theoretical progress in field electron emission[J]. Vacuum Electronics, 2012(6): 30-34
    [12]
    蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟[J]. 物理学报, 2009, 58(5):3268-3273 doi: 10.7498/aps.58.3268

    Cai Libing, Wang Jianguo. Numerical simulation of the breakdown on HPM dielectric surface[J]. Acta Physica Sinica, 2009, 58(5): 3268-3273 doi: 10.7498/aps.58.3268
    [13]
    董烨, 董志伟, 周前红, 等. 释气对介质沿面闪络击穿影响的粒子模拟[J]. 物理学报, 2014, 63:027901 doi: 10.7498/aps.63.027901

    Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment[J]. Acta Physica Sinica, 2014, 63: 027901 doi: 10.7498/aps.63.027901
    [14]
    蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60:025217 doi: 10.7498/aps.60.025217

    Cai Libing, Wang Jianguo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60: 025217 doi: 10.7498/aps.60.025217
    [15]
    李尧, 范杰清, 张芳, 等. 电磁辐照金属铝膜材料释气效应研究[J]. 强激光与粒子束, 2021, 33:123008 doi: 10.11884/HPLPB202133.210191

    Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008 doi: 10.11884/HPLPB202133.210191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (72) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return