Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245
Citation: Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245

Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions

doi: 10.11884/HPLPB202436.230245
  • Received Date: 2023-07-31
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-19
  • Available Online: 2023-12-27
  • Publish Date: 2024-02-29
  • Near-ground nuclear explosion fallout consists of radioactive particles of different particle size, and its motion has a large spatial and temporal scales. For the problem how to simulate the atmospheric γ ionizing radiation environment of the near-ground explosion fallout, in this paper, firstly, the mechanism analysis of atmospheric gamma radiation is carried out, the no-wind conditions are set up, and the theoretical model of fallout gamma radiation is established. Secondly, the corresponding numerical difference and integration algorithms are introduced and proposed. Finally, the simulation example of the radioactivity and radiative dose rate in the atmosphere of the 1000 kt Nevada near-ground explosion is given, a certain summary of the temporal and spatial evolution patterns of the radiation environment and the comparison of the results are accomplished, and the comparison reveals that the present model is able to calculate the theoretical maximum of the atmospheric radiation dose rate while ensuring the consistency of the activity results.
  • loading
  • [1]
    郑毅, 李鹏, 耿娜, 等. 核爆炸监测技术概论[M]. 北京: 国防工业出版社, 2019

    Zheng Yi, Li Peng, Geng Na, et al. Introduction to nuclear explosion monitoring technology[M]. Beijing: National Defense Industry Press, 2019
    [2]
    郑毅, 张彦, 应纯同. 基于中尺度气象模式的放射性爆炸烟云模拟[J]. 原子能科学技术, 2008, 42(s1):371-374

    Zheng Yi, Zhang Yan, Ying Chuntong. Mesoscale meteorological model based on radioactive explosion cloud simulation[J]. Atomic Energy Science and Technology, 2008, 42(s1): 371-374
    [3]
    乔登江. 核爆炸物理概论[M]. 北京: 原子能出版社, 1988

    Qiao Dengjiang. Introduction to nuclear explosion physics[M]. Beijing: Atomic Energy Press, 1988
    [4]
    Glasstone S, Dolan P J. The effects of nuclear weapons[M]. Washington: United States Department of Defense, United States Department of Energy, 1977.
    [5]
    卓俊, 黄流兴, 牛胜利, 等. 基于气固两相流模拟的核爆炸放射性沾染预测方法: 111651872A[P]. 2020-09-11

    Zhuo Jun, Huang Liuxing, Niu Shengli, et al. A method for predicting radioactive contamination in nuclear explosions based on gas-solid two-phase flow simulation: 111651872A[P]. 2020-09-11
    [6]
    Norment H G. DELFIC: department of defense fallout prediction system. Volume II. User’s manual[R]. Bedford: Atmospheric Science Associates, 1979.
    [7]
    Englert J W. In-line particulate transport and dispersion modeling using the regional atmospheric modeling system (RAMS)[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2005.
    [8]
    Schofield J C H. Mapping nuclear fallout using the weather research & forecasting (WRF) model[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2012.
    [9]
    Lundquist K A, Arthur R S, Neuscamman S, et al. Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework[J]. Journal of Environmental Radioactivity, 2023, 270: 107299. doi: 10.1016/j.jenvrad.2023.107299
    [10]
    Zheng Yang, Liu Wei, Li Xiaoqiang, et al. Prediction and analysis of nuclear explosion radioactive pollutant diffusion model[J]. Pollutants, 2023, 3(1): 43-56. doi: 10.3390/pollutants3010004
    [11]
    Conners S P. Aircrew dose and engine dust ingestion from nuclear cloud penetration[D]. Wright-Patterson AFB: Air Force Institute of Technology, 1985.
    [12]
    Garcia F E. Aircrew ionizing doses from nuclear weapon bursts[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2001.
    [13]
    葛宝珠, 陆芊芊, 陈学舜, 等. 放射性核素大气扩散数值模拟研究综述[J]. 环境科学学报, 2021, 41(5):1599-1609

    Ge Baozhu, Lu Qianqian, Chen Xueshun, et al. A review of the numerical simulations of the atmospheric dispersion of radionuclides[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1599-1609
    [14]
    Girard S, Mallet V, Korsakissok I, et al. Emulation and Sobol’ sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(7): 3484-3496. doi: 10.1002/2015JD023993
    [15]
    Bridgman C J, Bigelow W S. A new fallout prediction model[J]. Health Physics, 1982, 43(2): 205-218. doi: 10.1097/00004032-198208000-00002
    [16]
    Norment H G. DELFIC: department of defense fallout prediction system. Volume I - fundamentals[R]. Bedford: Atmospheric Science Associates, 1979.
    [17]
    Grell G A, Dudhia J, Stauffer D R. A description of the fifth-generation Penn State/NCAR Mesoscale model (MM5)[R]. NCAR Technical Note No. NCAR/TN-398+STR, 1994.
    [18]
    Fan L S, Zhu Chao. 气固两相流原理(上)[M]. 张学旭, 译. 北京: 科学出版社, 2018

    Fan L S, Zhu Chao. Principles of gas-solid flows (Ⅰ)[M]. Zhang Xuexu, trans. Beijing: Science Press, 2018
    [19]
    Kanarska Y, Lomov I, Glenn L, et al. Numerical simulation of cloud rise phenomena associated with nuclear bursts[J]. Annals of Nuclear Energy, 2009, 36(10): 1475-1483. doi: 10.1016/j.anucene.2009.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (105) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return