Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Wei Yihong, Li Xiangqiang, Su Yiyu, et al. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36: 073005. doi: 10.11884/HPLPB202436.230421
Citation: Wei Yihong, Li Xiangqiang, Su Yiyu, et al. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36: 073005. doi: 10.11884/HPLPB202436.230421

Design and experiment of open waveguide array antenna with high power and high efficiency

doi: 10.11884/HPLPB202436.230421
  • Received Date: 2023-11-30
  • Accepted Date: 2024-02-06
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-04-10
  • Publish Date: 2024-05-31
  • Aiming at the application requirements of array antenna with high-power capacity, high efficiency and low profile characteristics, a high-power capacity and high efficiency open waveguide array antenna is proposed and designed. The antenna consists of a compact 16-way waveguide power distribution network, 4×4 rectangular open waveguide unit cells and ceramic sealing radome. By designing the size of the open waveguide and loading E-plane metal bar on the surface of the open waveguide, the electric field distribution on the radiation aperture surface is more uniform, and the radiation gain of the unit cell is improved. The step matching structure is used to realize the size transformation from the output port of the waveguide power distribution network to the interface of the open waveguide unit cell, and the impedance bandwidth of the system is improved. The ceramic radome loaded on the array keeps the interior of the antenna in a vacuum state and improves the power capacity of the antenna. According to the application requirements of X-band high-power array antenna, a 16-element open waveguide array with a center frequency of 9.5 GHz is optimized and designed, the simulation results show that the aperture efficiency is greater than 90% and the reflection coefficient is less than −13.9 dB in the range of 9.25−9.65 GHz. The antenna is processed and tested, the measured antenna reflection curve and radiation pattern at the center frequency are in good agreement with the simulation results, the antenna gain at the center frequency is 21.7 dBi. The overall profile height of the antenna is twice the wavelengths at the central frequency, and the power capacity in vacuum obtained by simulation is 40 MW, the antenna has the characteristics of high power capacity, high efficiency and low profile.
  • loading
  • [1]
    Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [2]
    Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [3]
    El Misilmani H M, Al-Husseini M, Kabalan K Y, et al. Improved Vlasov antenna with curved cuts for high power microwaves[C]//2013 International Conference on High Performance Computing & Simulation (HPCS). 2013: 362-365.
    [4]
    Liang Tiezhu, Huang Wenhua, Shao Hao, et al. Design and near field characteristic of high power microwave dual-reflector antenna[C]//2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2012: 1-4.
    [5]
    Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840
    [6]
    Sang Lei, Wang Jingliang, Liu Ziyan, et al. A UWB metal waveguide slot array antenna based on hybrid resonant structural components[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 923-927. doi: 10.1109/LAWP.2022.3228542
    [7]
    李邓化, 姬芳芳, 郝翠, 等. 角锥喇叭天线设计与仿真研究[J]. 系统仿真学报, 2018, 30(10):3933-3938

    Li Denghua, Ji Fangfang, Hao Cui, et al. Study on design and simulation of pyramidal horn antenna[J]. Journal of System Simulation, 2018, 30(10): 3933-3938
    [8]
    Yamac Y E, Caliskan A, Turk A S, et al. Waveguide slot-fed horn antenna array with suppressed sidelobes[C]//2019 Signal Processing Symposium (SPSympo). 2019: 7-10.
    [9]
    廖雪. 毫米波雷达平板阵列天线的研究与设计[D]. 西安: 西北大学, 2018

    Liao Xue. Research and design of millimeter wave radar planar array antenna[D]. Xi’an: Northwest University, 2018
    [10]
    王斌驰. 基于扩散焊工艺的高效率E波段平板天线研究[D]. 成都: 电子科技大学, 2018

    Wang Binchi. Investigation of e-band high efficiency plate array antenna using diffusion bonding techniques[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [11]
    Vosoogh A, Kildal P S, Vassilev V, et al. E-band 3-D metal printed wideband planar horn array antenna[C]//2016 International Symposium on Antennas and Propagation (ISAP). 2016: 304-305.
    [12]
    Gueye M B, Ouslimani H H, Burokur S N, et al. Antenna array for point-to-point communication in E-band frequency range[C]//2011 IEEE International Symposium on Antennas and Propagation (APSURSI). 2011: 2077-2079.
    [13]
    Milligan T A. 现代天线设计[M]. 郭玉春, 方加云, 张光生, 译. 2版. 北京: 电子工业出版社, 2018

    Milligan T A. Modern antenna design[M]. Guo Yuchun, Fang Jiayun, Zhang Guangsheng, trans. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018
    [14]
    马骁. 高功率微波阵列天线若干关键技术研究[D]. 成都: 电子科技大学, 2020

    Ma Xiao. Research on some key technologies of high-power research on some key technologies of high-power[D]. Chengdu: University of Electronic Science and Technology of China, 2020
    [15]
    Jameson R A. High brightness accelerators[C]//Proc of ASI Conference. 1986: 497.
    [16]
    黄贵春, 李相强, 孔歌星, 等. 高功率内置弧形折线栅式极化转换天线罩的设计与实验研究[J]. 强激光与粒子束, 2022, 34:023001 doi: 10.11884/HPLPB202234.210420

    Huang Guichun, Li Xiangqiang, Kong Gexing, et al. Design and experimental study of high-power built-in curved meander-line polarization conversion radome[J]. High Power Laser and Particle Beams, 2022, 34: 023001 doi: 10.11884/HPLPB202234.210420
    [17]
    荀涛, 杨汉武, 张建德. 一种重复脉冲同轴馈电型陶瓷真空界面[J]. 强激光与粒子束, 2016, 28:015012 doi: 10.11884/HPLPB201628.015012

    Xun Tao, Yang Hanwu, Zhang Jiande. A coaxial ceramic vacuum interface for repetitive operated pulsed power source[J]. High Power Laser and Particle Beams, 2016, 28: 015012 doi: 10.11884/HPLPB201628.015012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views (1181) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return