Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Hua Qinyi, Li Lin, Qi Hongxin. B-spline discontinuous Galerkin method for Maxwell’s equations[J]. High Power Laser and Particle Beams, 2024, 36: 073004. doi: 10.11884/HPLPB202436.240076
Citation: Hua Qinyi, Li Lin, Qi Hongxin. B-spline discontinuous Galerkin method for Maxwell’s equations[J]. High Power Laser and Particle Beams, 2024, 36: 073004. doi: 10.11884/HPLPB202436.240076

B-spline discontinuous Galerkin method for Maxwell’s equations

doi: 10.11884/HPLPB202436.240076
  • Received Date: 2024-03-06
  • Accepted Date: 2024-04-07
  • Rev Recd Date: 2024-04-07
  • Available Online: 2024-04-19
  • Publish Date: 2024-05-31
  • In the field of computational electromagnetics, the discontinuous Galerkin time domain (DGTD) method typically relies on irregular grid partitioning in model space and high-order polynomial interpolation calculations on elements. When comparing two-dimensional spatial quadrilateral mesh partitioning to triangular mesh partitioning at the same interpolation order, quadrilateral meshing offers fewer degrees of freedom and higher computational efficiency. However, traditional basis function spaces, relying on isoparametric transformations and polynomial tensor product interpolation, only possess low-order completeness on quadrilateral elements. Consequently, their stability and accuracy are significantly influenced by grid distortion. To address this challenge, this thesis proposes a high-order B-spline interpolation DGTD method based on irregular quadrilateral meshes for solving Maxwell's equations. The advantage of B-spline interpolation lies in its high-order completeness on irregular elements, effectively eliminating internal degrees of freedom within the elements. Furthermore, the coefficient matrices of the discrete system for Maxwell's equations also possess exact analytical forms. Analyzing the eigenmodes of cavities and the electromagnetic scattering of wedge structures, thus the maximum allowable time step increasing by 2.5 times and reducing the required unknowns by 25% compared to COMSOL software, the proposed algorithm exhibits notable advantages in terms of higher stability and precision.
  • loading
  • [1]
    Joseph R M, Taflove A. FDTD Maxwell's equations models for nonlinear electrodynamics and optics[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 364-374. doi: 10.1109/8.558652
    [2]
    Goorjian P M, Taflove A, Joseph R M, et al. Computational modeling of femtosecond optical solitons from Maxwell's equations[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2416-2422. doi: 10.1109/3.159548
    [3]
    Körpinar T, Demirkol R C, Körpinar Z, et al. Maxwellian evolution equations along the uniform optical fiber[J]. Optik, 2020, 217: 164561. doi: 10.1016/j.ijleo.2020.164561
    [4]
    Anttu N, Mäntynen H, Sorokina A, et al. Applied electromagnetic optics simulations for nanophotonics[J]. Journal of Applied Physics, 2021, 129(13): 131102. doi: 10.1063/5.0041275
    [5]
    Zhelyeznyakov M V, Brunton S L, Majumdar A. Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces[C]//2021 Conference on Lasers and Electro-Optics (CLEO). 2021: 1-2.
    [6]
    Zhao Ying, Lan Jun, Ding Dazhi. A high-order time-domain discontinuous Galerkin integral equation method for analysis of multiscale PEC objects[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 104-108. doi: 10.1109/LAWP.2023.3318249
    [7]
    Dong Ming, Chen Liang, Li Ping, et al. Discontinuous Galerkin time-domain method in electromagnetics: from nanostructure simulations to multiphysics implementations[M]//Ren Qiang, Yan Su, Elsherbeni A Z. Advances in Time-Domain Computational Electromagnetic Methods. Hoboken: Wiley, 2022: 135-198.
    [8]
    Ainsworth M. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods[J]. Journal of Computational Physics, 2004, 198(1): 106-130. doi: 10.1016/j.jcp.2004.01.004
    [9]
    van Willenswaard L J C, Smeets S, Renaud N, et al. Computation of optical properties of real photonic band gap crystals as opposed to utopian ones[C]//2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2023: ck_p_38.
    [10]
    Yee K S, Chen J S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 354-363. doi: 10.1109/8.558651
    [11]
    Collino F, Fouquet T, Joly P. Conservative space-time mesh refinement methods for the FDTD solution of Maxwell’s equations[J]. Journal of Computational Physics, 2006, 211(1): 9-35. doi: 10.1016/j.jcp.2005.03.035
    [12]
    Inan U S, Marshall R A. Numerical electromagnetics: the FDTD method[M]. Cambridge: Cambridge University Press, 2011.
    [13]
    Gedney S D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics[M]. Cham: Springer Nature, 2011.
    [14]
    Busch K, König M, Niegemann J. Discontinuous Galerkin methods in nanophotonics[J]. Laser & Photonics Reviews, 2011, 5(6): 773-809.
    [15]
    Kennedy C A, Carpenter M H, Lewis R M. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations[J]. Applied Numerical Mathematics, 2000, 35(3): 177-219. doi: 10.1016/S0168-9274(99)00141-5
    [16]
    陈娟. 基于多元样条插值的有限元方法[M]. 北京: 科学出版社, 2020

    Chen Juan. Finite element method based on multivariate spline interpolation[M]. Beijing: Science Press, 2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (551) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return