| Citation: | Hua Qinyi, Li Lin, Qi Hongxin. B-spline discontinuous Galerkin method for Maxwell’s equations[J]. High Power Laser and Particle Beams, 2024, 36: 073004. doi: 10.11884/HPLPB202436.240076 |
| [1] |
Joseph R M, Taflove A. FDTD Maxwell's equations models for nonlinear electrodynamics and optics[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 364-374. doi: 10.1109/8.558652
|
| [2] |
Goorjian P M, Taflove A, Joseph R M, et al. Computational modeling of femtosecond optical solitons from Maxwell's equations[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2416-2422. doi: 10.1109/3.159548
|
| [3] |
Körpinar T, Demirkol R C, Körpinar Z, et al. Maxwellian evolution equations along the uniform optical fiber[J]. Optik, 2020, 217: 164561. doi: 10.1016/j.ijleo.2020.164561
|
| [4] |
Anttu N, Mäntynen H, Sorokina A, et al. Applied electromagnetic optics simulations for nanophotonics[J]. Journal of Applied Physics, 2021, 129(13): 131102. doi: 10.1063/5.0041275
|
| [5] |
Zhelyeznyakov M V, Brunton S L, Majumdar A. Deep learning to accelerate Maxwell’s equations for inverse design of dielectric metasurfaces[C]//2021 Conference on Lasers and Electro-Optics (CLEO). 2021: 1-2.
|
| [6] |
Zhao Ying, Lan Jun, Ding Dazhi. A high-order time-domain discontinuous Galerkin integral equation method for analysis of multiscale PEC objects[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 104-108. doi: 10.1109/LAWP.2023.3318249
|
| [7] |
Dong Ming, Chen Liang, Li Ping, et al. Discontinuous Galerkin time-domain method in electromagnetics: from nanostructure simulations to multiphysics implementations[M]//Ren Qiang, Yan Su, Elsherbeni A Z. Advances in Time-Domain Computational Electromagnetic Methods. Hoboken: Wiley, 2022: 135-198.
|
| [8] |
Ainsworth M. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods[J]. Journal of Computational Physics, 2004, 198(1): 106-130. doi: 10.1016/j.jcp.2004.01.004
|
| [9] |
van Willenswaard L J C, Smeets S, Renaud N, et al. Computation of optical properties of real photonic band gap crystals as opposed to utopian ones[C]//2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2023: ck_p_38.
|
| [10] |
Yee K S, Chen J S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 354-363. doi: 10.1109/8.558651
|
| [11] |
Collino F, Fouquet T, Joly P. Conservative space-time mesh refinement methods for the FDTD solution of Maxwell’s equations[J]. Journal of Computational Physics, 2006, 211(1): 9-35. doi: 10.1016/j.jcp.2005.03.035
|
| [12] |
Inan U S, Marshall R A. Numerical electromagnetics: the FDTD method[M]. Cambridge: Cambridge University Press, 2011.
|
| [13] |
Gedney S D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics[M]. Cham: Springer Nature, 2011.
|
| [14] |
Busch K, König M, Niegemann J. Discontinuous Galerkin methods in nanophotonics[J]. Laser & Photonics Reviews, 2011, 5(6): 773-809.
|
| [15] |
Kennedy C A, Carpenter M H, Lewis R M. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations[J]. Applied Numerical Mathematics, 2000, 35(3): 177-219. doi: 10.1016/S0168-9274(99)00141-5
|
| [16] |
陈娟. 基于多元样条插值的有限元方法[M]. 北京: 科学出版社, 2020
Chen Juan. Finite element method based on multivariate spline interpolation[M]. Beijing: Science Press, 2020
|