Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Su Yiyu, Li Xiangqiang, Wei Yihong, et al. Design of a high-power miniaturized waveguide E-plane heterodyne power combiner[J]. High Power Laser and Particle Beams, 2024, 36: 073003. doi: 10.11884/HPLPB202436.230433
Citation: Su Yiyu, Li Xiangqiang, Wei Yihong, et al. Design of a high-power miniaturized waveguide E-plane heterodyne power combiner[J]. High Power Laser and Particle Beams, 2024, 36: 073003. doi: 10.11884/HPLPB202436.230433

Design of a high-power miniaturized waveguide E-plane heterodyne power combiner

doi: 10.11884/HPLPB202436.230433
  • Received Date: 2023-12-10
  • Accepted Date: 2024-02-28
  • Rev Recd Date: 2024-02-28
  • Available Online: 2024-03-18
  • Publish Date: 2024-05-31
  • The existing heterodyne power combiners are not suitable for applications where input and output signals need to be in the same direction with limited space. To solve the problem, this paper designs a high-power and miniaturized heterodyne power combiner operating at frequencies of 9.3 GHz and 9.7 GHz. Based on the traditional filter-based heterodyne power combiner, the proposed design utilizes an over-mode rectangular waveguide E-plane power combiner. The waveguide filters are parallel and the input ports are also located on the same plane, so that the combiner is suitable for the specific applications. The sizes of the rectangular waveguide are reduced to suppress higher-order modes. Besides, the distance between mode strips is decreased in integer multiples of half-wavelength of the waveguide to compresses the overall length with high power capacity. The combiner has a length of 9.2λ, a width of 1.5λ and a height of 2.8λ, while λ is the wavelength corresponding to the frequency of 9.5 GHz in free space. At 9.3 GHz and 9.7 GHz, the return loss of the combiner is more than 20 dB, its combining efficiency is more than 98% , and the isolation between input ports is more than 20 dB. At microwave pulse breakdown threshold of 80 MV/m, the combiner provides a power capacity of 310 MW.
  • loading
  • [1]
    Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18: 055702. doi: 10.1063/1.3560599
    [2]
    Song W, Sun J, Song Z M, et al. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution[J]. AIP Advances, 2012, 2: 012118. doi: 10.1063/1.3679546
    [3]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007.
    [4]
    Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: IEEE Press, 2001.
    [5]
    张嘉焱, 舒挺, 袁成卫. 高功率微波空间功率合成的初步研究[J]. 强激光与粒子束, 2007, 19(6):915-918

    Zhang Jiayan, Shu Ting, Yuan Chengwei. Primary study on spatial powers combining of parallel and intersectant beams of high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(6): 915-918
    [6]
    徐继东. 基于差相移的异频功率合成[J]. 微波学报, 2020, 36(s1):237-239

    Xu Jidong. Methods of combination for different-frequency microwave signals based on differential phase-shift[J]. Journal of Microwaves, 2020, 36(s1): 237-239
    [7]
    何朝雄. 基于拍波的高效紧凑双频相对论磁控管研究[D]. 成都: 电子科技大学, 2022

    He Chaoxiong. Research on efficient and compact dual frequency relativistic magnetron based on beat wave[D]. Chengdu: University of Electronic Science and Technology of China, 2022
    [8]
    方进勇, 宁辉, 张世龙, 等. 利用速调管放大器产生高功率微波拍波实验研究[J]. 物理学报, 2003, 52(4):911-913 doi: 10.7498/aps.52.911

    Fang Jinyong, Ning Hui, Zhang Shilong, et al. Production of beat waves using S-band klystron amplifier[J]. Acta Physica Sinica, 2003, 52(4): 911-913 doi: 10.7498/aps.52.911
    [9]
    方进勇, 李平, 乔登江. 利用行波管放大器产生微波波段拍波实验[J]. 国防科技大学学报, 2002, 24(4):65-68

    Fang Jinyong, Li Ping, Qiao Dengjiang. The production of beat wave using l-band travelling-wave tube amplifier[J]. Journal of National University of Defense, 2002, 24(4): 65-68
    [10]
    李国林, 舒挺, 袁成卫. S波段高功率微波波导输出多工器研究[J]. 强激光与粒子束, 2007, 19(4):667-670

    Li Guolin, Shu Ting, Yuan Chengwei. Output multiplexer for S band high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(4): 667-670
    [11]
    Li Guolin, Shu Ting, Zhang Jun, et al. Generation of gigawatt level beat waves[J]. Applied Physics Letters, 2010, 96: 234102. doi: 10.1063/1.3449134
    [12]
    Zhang Qiang, Yuan Chengwei, Liu Lie. Design of a dual-band power combining architecture for high-power microwave applications[J]. Laser and Particle Beams, 2010, 28(3): 377-385. doi: 10.1017/S0263034610000327
    [13]
    Li Jiawei, Song Wei, Huang Wenhua, et al. Combining gigawatt level X-band high power microwave beams with an overmoded circular waveguide diplexer[J]. Physics of Plasmas, 2014, 21: 023105. doi: 10.1063/1.4865821
    [14]
    张宇航. 双频高功率微波合成技术研究[D]. 成都: 电子科技大学, 2019

    Zhang Yuhang. Research on dual-frequency high power microwave synthesis technology[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [15]
    甘本祓, 吴万春. 现代微波滤波器的结构与设计(上册)[M]. 北京: 科学出版社, 1973

    Gan Benfu, Wu Wanchun. Structure and design of modern microwave filters[M]. Beijing: Science Press, 1973
    [16]
    高晓惠, 王家礼, 孙璐. S参数法设计波导E面金属插片窄带滤波器[J]. 无线电工程, 2003, 33(12):49-51

    Gao Xiaohui, Wang Jiali, Sun Lu. Design of narrowband waveguide E-plane metal insert filter by using of S-parameter[J]. Radio Engineering, 2003, 33(12): 49-51
    [17]
    申凯, 王光明, 齐立辉. 用模式匹配法设计波导双金属膜片滤波器[J]. 中国电子科学研究院学报, 2008, 3(6):653-656

    Shen Kai, Wang Guangming, Qi Lihui. Design of double septum waveguide filter based on mode matching method[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(6): 653-656
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (888) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return