Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Zheng Xinzhi, Dou Shiji, Liu Xiang, et al. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453
Citation: Zheng Xinzhi, Dou Shiji, Liu Xiang, et al. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453

Simulation of light field regulation based on micro-nano structure and material properties

doi: 10.11884/HPLPB202436.230453
  • Received Date: 2023-12-31
  • Accepted Date: 2024-02-01
  • Rev Recd Date: 2024-02-01
  • Available Online: 2024-02-20
  • Publish Date: 2024-02-29
  • The finite-difference time-domain algorithm (FDTD) was used to simulate the optical field distribution of the micro-nano structure target, explore the optical transmission mechanism in the micro-nano structure target, and analyze the influence of material properties and structural parameters on the optical transmission characteristics and optical field distribution. Based on the simulation results of optical field distribution and evolution, the laser transmission characteristics in the nano-wire and nano-pore array targets of semiconductor alumina, insulator silicon dioxide and metal copper with different electrical conductivity are compared, and the modifications of optical field distribution during optical transmission are analyzed. The results show that the optical transmission characteristics and optical field distribution in the target can be modulated by changing the diameter and spacing of the holes (nanowires) in the target structure, and the optical field can be periodically oscillated between the dielectric material and the vacuum region, or transmitted in a stable state. When the laser is transmitted in the copper nanopore array, the light transmittance increases with the increase of the hole radius. Based on the simulation results of light field distribution and evolution, the laser transmission properties of different materials and micro-nano structure targets are compared, the physical images and corresponding phenomena are given, and the micro-nano structure target design is given according to the requirements of light field regulation.
  • loading
  • [1]
    Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [2]
    邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26:100201 doi: 10.3788/HPLPB20142610.100201

    Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.3788/HPLPB20142610.100201
    [3]
    丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081 doi: 10.3788/HPLPB20132512.3077

    Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in research center of laser fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
    [4]
    Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
    [5]
    Hu H Y, Müller C, Keitel C H. Complete QED theory of multiphoton trident pair production in strong laser fields[J]. Physical Review Letters, 2010, 105: 080401. doi: 10.1103/PhysRevLett.105.080401
    [6]
    Li Boyuan, Zhang Zhimeng, Wang Jian, et al. Transport of fast electrons in a nanowire array with collisional effects included[J]. Physics of Plasmas, 2015, 22: 123118. doi: 10.1063/1.4938515
    [7]
    Yang Yue, Li Boyuan, Wu Yuchi, et al. Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23: 15001. doi: 10.1088/2058-6272/abbd37
    [8]
    Jiang S, Krygier A G, Schumacher D W, et al. Effects of front-surface target structures on properties of relativistic laser-plasma electrons[J]. Physical Review E, 2014, 89: 013106. doi: 10.1103/PhysRevE.89.013106
    [9]
    Snyder J, Ji Liangliang, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
    [10]
    Kong Defeng, Zhang Guoqiang, Shou Yinren, et al. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7: 064403. doi: 10.1063/5.0120845
    [11]
    Shou Yinren, Kong Defeng, Wang Pengjie, et al. High-efficiency water-window X-ray generation from nanowire array targets irradiated with femtosecond laser pulses[J]. Optics Express, 2021, 29(4): 5427-5436. doi: 10.1364/OE.417512
    [12]
    Demaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 1966, 8(7): 174-176. doi: 10.1063/1.1754541
    [13]
    Poyé A, Hulin S, Bailly-Grandvaux M, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments[J]. Physical Review E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106
    [14]
    De Marco M, Cikhardt J, Krása J, et al. Electromagnetic pulses produced by expanding laser produced Au plasma[J]. Nukleonika, 2015, 60(2): 239-243. doi: 10.1515/nuka-2015-0043
    [15]
    Mead M J, Neely D, Gauoin J, et al. Electromagnetic pulse generation within a petawatt laser target chamber[J]. Review of Scientific Instruments, 2004, 75(10): 4225-4227. doi: 10.1063/1.1787606
    [16]
    Xu Zhiqian, Meng Cui. Numerical simulation of EMP environment radiated by X-rays inside a high-power laser facility[C]//2018 International Applied Computational Electromagnetics Society Symposium (ACES). 2018: 1-2.
    [17]
    Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (107) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return