Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014
Citation: Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014

Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm

doi: 10.11884/HPLPB202436.240014
  • Received Date: 2023-12-10
  • Accepted Date: 2024-01-15
  • Rev Recd Date: 2024-01-12
  • Available Online: 2024-01-17
  • Publish Date: 2024-01-15
  • The highly reflective (HR) mirrors with high-performance are widely employed in mid-infrared (mid-IR) laser systems. The manufacturing of mid-IR HR mirrors with high reflectivity requires techniques to precisely measure their high reflectivity. In this paper, a continuous-wave cavity ring-down (CRD) experimental apparatus in the 2.7−3.0 μm spectral range is established based on a quantum-cascade laser for high reflectivity measurement. By precisely optimizing the laser wavelength within the reflection band of the mid-IR HR mirrors, analyzing the influence of water vapor absorption on the ring-down time and reflectivity measurements, and comparing the reflectivity results measured under ambient air in clean-room laboratory and under nitrogen purging, the accurate measurement of high reflectivity is achieved at the 2.7−3.0 μm spectral band with an absolute reflectivity measurement accuracy of below 2×10−5 for about 99.95% reflectivity. The experimental results demonstrate that by setting the laser wavelength precisely to 2.9 μm and employing equal lengths of initial and test ring-down cavities (RDC) to avoid the influence of water vapor’s absorption lines, the reflectivity measurement for the 2.7−3.0 μm spectral band can be performed under normal clean-room laboratory air, without the need of nitrogen purging.
  • loading
  • [1]
    程乃俊, 李惟帆, 祁峰. 中红外激光器研究进展[J]. 激光与光电子学进展, 2023, 60:1700006

    Cheng Naijun, Li Weifan, Qi Feng. Progress of mid-infrared laser[J]. Laser & Optoelectronics Progress, 2023, 60: 1700006
    [2]
    Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. doi: 10.1364/OE.23.005167
    [3]
    Quan C, Sun D L, Zhang H L, et al. 13-W and 1000-Hz of a 2.7-μm laser on the 968 nm LD side-pumped Er: YAP crystal with concave end-faces[J]. Optics Express, 2021, 29(14): 21655-21663. doi: 10.1364/OE.428874
    [4]
    Chen T T, Li J, Yuan J L, et al. 3 μm Watt-level all-fiber lasers based on mid-IR dielectric-coated fiber mirrors[J]. Journal of Lightwave Technology, 2023, 41(1): 249-254. doi: 10.1109/JLT.2022.3211927
    [5]
    马连英, 周松青, 黄超, 等. 非链式重复频率HF激光器激光介质净化技术[J]. 强激光与粒子束, 2018, 30:051003 doi: 10.11884/HPLPB201830.170313

    Ma Lianying, Zhou Songqing, Huang Chao, et al. Purifying technology for non-chain discharge-pumped HF laser media at high frequency[J]. High Power Laser and Particle Beams, 2018, 30: 051003 doi: 10.11884/HPLPB201830.170313
    [6]
    郭建增, 王杰, 赵海涛, 等. 连续波氟化氢激光输出光谱特性研究[J]. 激光与光电子学进展, 2018, 55:021404

    Guo Jianzeng, Wang Jie, Zhao Haitao, et al. Output spectrum of continuous wave hydrogen fluoride laser[J]. Laser & Optoelectronics Progress, 2018, 55: 021404
    [7]
    Fried W A, Chan K H, Darling C L, et al. Use of a DPSS Er: YAG laser for the selective removal of composite from tooth surfaces[J]. Biomedical Optics Express, 2018, 9(10): 5026-5036. doi: 10.1364/BOE.9.005026
    [8]
    Borri S, Insero G, Santambrogio G, et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers[J]. Applied Physics B, 2019, 125: 18.
    [9]
    Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. doi: 10.1016/j.jlumin.2015.03.004
    [10]
    许晓军. 高能激光六十年: 回顾与展望[J]. 强激光与粒子束, 2020, 32:011007 doi: 10.11884/HPLPB202032.0480

    Xu Xiaojun. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 2020, 32: 011007 doi: 10.11884/HPLPB202032.0480
    [11]
    李定, 熊胜明. 离子束溅射氧化物薄膜的中红外特性[J]. 中国激光, 2015, 42:0107002 doi: 10.3788/CJL201542.0107002

    Li Ding, Xiong Shengming. Mid-infrared properties of oxide coatings prepared by ion beam sputtering deposition[J]. Chinese Journal of Lasers, 2015, 42: 0107002 doi: 10.3788/CJL201542.0107002
    [12]
    Rudisill J E, Lohneiss W H, Jeffers W Q. Ultralow absorption coatings for mid-infrared cw lasers[C]. Proceedings of the SPIE 2253, Optical Interference Coatings. 1994: 802-808.
    [13]
    Gordon I E, Rothman L S, Hargreaves R J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949. doi: 10.1016/j.jqsrt.2021.107949
    [14]
    Zeng T T, Zhu M P, Chai Y J, et al. Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings[J]. Thin Solid Films, 2020, 697: 137826. doi: 10.1016/j.tsf.2020.137826
    [15]
    Dekkers H F W, Gallo A, Van Elshocht S. Infrared molar absorption coefficient of H2O stretching modes in SiO2[J]. Thin Solid Films, 2013, 542: 8-13. doi: 10.1016/j.tsf.2013.05.151
    [16]
    李斌成, 龚元. 光腔衰荡高反射率测量技术综述[J]. 激光与光电子学进展, 2010, 47:021203

    Li Bincheng, Gong Yuan. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser & Optoelectronics Progress, 2010, 47: 021203
    [17]
    高丽峰, 熊胜明, 李斌成, 等. 用光腔衰荡技术测量镜片的反射率[J]. 强激光与粒子束, 2005, 17(3):335-338

    Gao Lifeng, Xiong Shengming, Li Bincheng, et al. Analysis of reflectivity measurement by cavity ring-down spectroscopy[J]. High Power Laser and Particle Beams, 2005, 17(3): 335-338
    [18]
    ISO 13142: 2015, Optics and photonics – lasers and laser-related equipment – cavity ring-down method for high-reflectance and high-transmittance measurement[S
    [19]
    Xiao Shilei, Li Bincheng, Wang Jing. Precise measurements of super-high reflectance with cavity ring-down technique[J]. Metrologia, 2020, 57: 055002. doi: 10.1088/1681-7575/ab9d2d
    [20]
    Cui Hao, Li Bincheng, Han Yanling, et al. Extinction measurement with open-path cavity ring-down technique of variable cavity length[J]. Optics Express, 2016, 24(12): 13343-13350. doi: 10.1364/OE.24.013343
    [21]
    Winkler G, Perner L W, Truong G W, et al. Mid-infrared interference coatings with excess optical loss below 10 ppm[J]. Optica, 2021, 8(5): 686-696. doi: 10.1364/OPTICA.405938
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (138) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return