| Citation: | He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001. doi: 10.11884/HPLPB202436.240061 |
| [1] |
Kraus J D. Heinrich Hertz-theorist and experimenter[J]. IEEE Transactions on Microwave Theory and Techniques, 1988, 36(5): 824-829. doi: 10.1109/22.3601
|
| [2] |
约翰·D. 克劳斯, 罗纳德·J. 马赫夫克. 天线[M]. 章文勋, 译. 3版. 北京: 电子工业出版社, 2018
Kraus J D, Marhefka R J. Antennas: for all applications[M]. Zhang Wenxun, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2018
|
| [3] |
Kanda M. Standard antennas for electromagnetic interference measurements and methods to calibrate them[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 261-273. doi: 10.1109/15.328855
|
| [4] |
Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163-1175. doi: 10.1063/1.1715038
|
| [5] |
Harrington R F. Effect of antenna size on gain, bandwidth, and efficiency[J]. Journal of Research of the National Bureau of Standards, 1960, 64D(1): 1-12.
|
| [6] |
McLean J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44: 672. doi: 10.1109/8.496253
|
| [7] |
贺青. 面向量子信息处理的超导微波谐振器研究[D]. 成都: 西南交通大学, 2022
He Qing. Researches on superconducting microwave resonators for quantum information processing[D]. Chengdu: Southwest Jiaotong University, 2022
|
| [8] |
Bao Han, Duan Junlei, Jin Shenchao, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 2020, 581(7807): 159-163. doi: 10.1038/s41586-020-2243-7
|
| [9] |
Ji Wentao, Zhang Lin, Wang Mengqi, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 2020, 125: 020504. doi: 10.1103/PhysRevLett.125.020504
|
| [10] |
Zheng Xin, Dolde J, Lochab V, et al. Differential clock comparisons with a multiplexed optical lattice clock[J]. Nature, 2022, 602(7897): 425-430. doi: 10.1038/s41586-021-04344-y
|
| [11] |
Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography[J]. Nature, 2022, 602(7898): 590-594. doi: 10.1038/s41586-021-04315-3
|
| [12] |
Jiang Min, Su Haowen, Garcon A, et al. Search for axion-like dark matter with spin-based amplifiers[J]. Nature Physics, 2021, 17(12): 1402-1407. doi: 10.1038/s41567-021-01392-z
|
| [13] |
Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619. doi: 10.1038/nphoton.2013.177
|
| [14] |
Jiao Yuechun, Hao Liping, Han Xiaoxuan, et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nD J Floquet states[J]. Physical Review Applied, 2017, 8: 014028. doi: 10.1103/PhysRevApplied.8.014028
|
| [15] |
Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 2016, 18: 053017. doi: 10.1088/1367-2630/18/5/053017
|
| [16] |
Jiao Yuechun, Han Xiaoxuan, Yang Zhiwei, et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 2016, 94: 023832. doi: 10.1103/PhysRevA.94.023832
|
| [17] |
Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 2020, 13: 054034. doi: 10.1103/PhysRevApplied.13.054034
|
| [18] |
Wade C G, Šibalić N, De Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. doi: 10.1038/nphoton.2016.214
|
| [19] |
Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
|
| [20] |
Xiao Min, Li Yongqing, Jin Shaozheng, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. Physical Review Letters, 1995, 74(5): 666-669. doi: 10.1103/PhysRevLett.74.666
|
| [21] |
Harris S E. Pondermotive forces with slow light[J]. Physical Review Letters, 2000, 85(19): 4032-4035. doi: 10.1103/PhysRevLett.85.4032
|
| [22] |
Li Huaqiang, Hu Jinlian, Bai Jingxu, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 2022, 30(8): 13522-13529. doi: 10.1364/OE.454873
|
| [23] |
Liu Bang, Zhang Lihua, Liu Zongkai, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 2023, 1: 0020151.
|
| [24] |
Holloway C L, Simons M T, Gordon J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. doi: 10.1109/TEMC.2016.2644616
|
| [25] |
Mohapatra A K, Jackson T R, Adams C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 2007, 98: 113003. doi: 10.1103/PhysRevLett.98.113003
|
| [26] |
Kanda M. Standard probes for electromagnetic field measurements[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(10): 1349-1364. doi: 10.1109/8.247775
|
| [27] |
Jing Mingyong, Hu Ying, Ma Jie, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
|
| [28] |
Artusio-Glimpse A, Simons M T, Prajapati N, et al. Modern RF measurements with hot atoms: A technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 2022, 23(5): 44-56. doi: 10.1109/MMM.2022.3148705
|
| [29] |
Holloway C L, Gordon J A, Schwarzkopf A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 2014, 104: 244102. doi: 10.1063/1.4883635
|
| [30] |
Mohapatra A K, Bason M G, Butscher B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008, 4(11): 890-894. doi: 10.1038/nphys1091
|
| [31] |
Zhang Linjie, Liu Jiasheng, Jia Yue, et al. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement[J]. Chinese Physics B, 2018, 27: 033201. doi: 10.1088/1674-1056/27/3/033201
|
| [32] |
Fan Haoquan, Kumar S, Sheng Jiteng, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields[J]. Physical Review Applied, 2015, 4: 044015. doi: 10.1103/PhysRevApplied.4.044015
|
| [33] |
Yuan Jinpeng, Yang Wenguang, Jing Mingyong, et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 2023, 86: 106001. doi: 10.1088/1361-6633/acf22f
|
| [34] |
Fan Haoquan, Kumar S, Kübler H, et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 104004. doi: 10.1088/0953-4075/49/10/104004
|
| [35] |
Kumar S, Fan Haoquan, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637. doi: 10.1364/OE.25.008625
|
| [36] |
Liu Xiubin, Jia Fengdong, Zhang Huaiyu, et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 2021, 11: 085127. doi: 10.1063/5.0054027
|
| [37] |
Kumar S, Fan Haoquan, Kübler H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 2017, 7: 42981. doi: 10.1038/srep42981
|
| [38] |
Li Shaohua, Yuan Jinpeng, Wang Lirong. Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms[J]. Applied Sciences, 2020, 10: 8110. doi: 10.3390/app10228110
|
| [39] |
Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 2018, 113: 073501. doi: 10.1063/1.5038550
|
| [40] |
Holloway C L, Prajapati N, Artusio-Glimpse A B, et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 2022, 120: 204001. doi: 10.1063/5.0088532
|
| [41] |
Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 2021, 16: 024008. doi: 10.1103/PhysRevApplied.16.024008
|
| [42] |
Meyer D H, O'brien C, Fahey D P, et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 2021, 104: 043103. doi: 10.1103/PhysRevA.104.043103
|
| [43] |
Prajapati N, Robinson A K, Berweger S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119: 214001. doi: 10.1063/5.0069195
|
| [44] |
Liao Kaiyu, Tu Haitao, Yang Shuzhe, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 2020, 101: 053432. doi: 10.1103/PhysRevA.101.053432
|
| [45] |
景明勇. 基于里德堡原子的微波超外差精密测量研究[D]. 太原: 山西大学, 2020
Jing Mingyong. Microwave precision measurement based on Rydberg-atom superhet[D]. Taiyuan: Shanxi University, 2020
|
| [46] |
Li Shaohua, Yuan Jinpeng, Wang Lirong, et al. Enhanced microwave electric field measurement with cavity-assisted Rydberg electromagnetically induced transparency[J]. Frontiers in Physics, 2022, 10: 846687. doi: 10.3389/fphy.2022.846687
|
| [47] |
武博, 林沂, 吴逢川, 等. 基于平行板谐振器的量子微波电场测量技术[J]. 物理学报, 2023, 72:034204 doi: 10.7498/aps.72.20221582
Wu Bo, Lin Yi, Wu Fengchuan, et al. Quantum microwave electric field measurement technology based on enhancement electric field resonator[J]. Acta Physica Sinica, 2023, 72: 034204 doi: 10.7498/aps.72.20221582
|
| [48] |
Ding Dongsheng, Liu Zongkai, Shi Baosen, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452. doi: 10.1038/s41567-022-01777-8
|
| [49] |
张临杰, 景明勇, 张好. 基于里德堡原子的微波电场量子传感[J]. 山西大学学报(自然科学版), 2022, 45(3):712-722
Zhang Linjie, Jing Mingyong, Zhang Hao. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(3): 712-722
|
| [50] |
Riedel M F, Böhi P, Li Yun, et al. Atom-chip-based generation of entanglement for quantum metrology[J]. Nature, 2010, 464(7292): 1170-1173. doi: 10.1038/nature08988
|
| [51] |
Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit[J]. Nature, 2010, 464(7292): 1165-1169. doi: 10.1038/nature08919
|
| [52] |
Strobel H, Muessel W, Linnemann D, et al. Fisher information and entanglement of non-Gaussian spin states[J]. Science, 2014, 345(6195): 424-427. doi: 10.1126/science.1250147
|
| [53] |
Penasa M, Gerlich S, Rybarczyk T, et al. Measurement of a microwave field amplitude beyond the standard quantum limit[J]. Physical Review A, 2016, 94: 022313. doi: 10.1103/PhysRevA.94.022313
|
| [54] |
Tanasittikosol M, Pritchard J D, Maxwell D, et al. Microwave dressing of Rydberg dark states[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44: 184020. doi: 10.1088/0953-4075/44/18/184020
|
| [55] |
Facon A, Dietsche E K, Grosso D, et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state[J]. Nature, 2016, 535(7611): 262-265. doi: 10.1038/nature18327
|
| [56] |
Tu Haitao, Liao Kaiyu, He Guodong, et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[DB/OL]. arXiv preprint arXiv: 2307.15617, 2023.
|
| [57] |
Cai Minghao, Xu Zishan, You Shuhang, et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 2022, 9: 250. doi: 10.3390/photonics9040250
|
| [58] |
Cai Minghao, You Shuhang, Zhang Shanshan, et al. Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states[J]. Applied Physics Letters, 2023, 122: 161103. doi: 10.1063/5.0146768
|
| [59] |
Borówka S, Pylypenko U, Mazelanik M, et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 2024, 18(1): 32-38. doi: 10.1038/s41566-023-01295-w
|
| [60] |
Gordon J A, Holloway C L, Schwarzkopf A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105: 024104. doi: 10.1063/1.4890094
|
| [61] |
Holloway C L, Gordon J A, Jefferts S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. doi: 10.1109/TAP.2014.2360208
|
| [62] |
Song Zhenfei, Feng Zhigang, Liu Xinmeng, et al. Quantum-based determination of antenna finite range gain by using Rydberg atoms[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1589-1592. doi: 10.1109/LAWP.2017.2652476
|
| [63] |
Downes L A, MacKellar A R, Whiting D J, et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 2020, 10: 011027.
|
| [64] |
陈志文, 佘圳跃, 廖开宇, 等. 基于Rydberg原子天线的太赫兹测量[J]. 物理学报, 2021, 70:060702 doi: 10.7498/aps.70.20201870
Chen Zhiwen, She Zhenyue, Liao Kaiyu, et al. Terahertz measurement based on Rydberg atomic antenna[J]. Acta Physica Sinica, 2021, 70: 060702 doi: 10.7498/aps.70.20201870
|
| [65] |
Zhou Yanchen, Peng Ruijie, Zhang Jinbiao, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 2022, 14: 5931808.
|
| [66] |
焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器[J]. 物理学报, 2018, 67:073201 doi: 10.7498/aps.67.20172636
Jiao Yuechun, Zhao Jianming, Jia Suotang. Broadband Rydberg atom-based radio-frequency field sensor[J]. Acta Physica Sinica, 2018, 67: 073201 doi: 10.7498/aps.67.20172636
|
| [67] |
Bason M G, Tanasittikosol M, Sargsyan A, et al. Enhanced electric field sensitivity of rf-dressed Rydberg dark states[J]. New Journal of Physics, 2010, 12: 065015. doi: 10.1088/1367-2630/12/6/065015
|
| [68] |
Tanasittikosol M. Rydberg dark states in external fields[D]. Durham: Durham University, 2011.
|
| [69] |
Anderson D A, Schwarzkopf A, Miller S A, et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 2014, 90: 043419. doi: 10.1103/PhysRevA.90.043419
|
| [70] |
Anderson D A, Miller S A, Raithel G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 2016, 5: 034003. doi: 10.1103/PhysRevApplied.5.034003
|
| [71] |
Yoshida S, Reinhold C O, Burgdörfer J, et al. Photoexcitation of n
|
| [72] |
Coop S, Palacios S, Gomez P, et al. Floquet theory for atomic light-shift engineering with near-resonant polychromatic fields[J]. Optics Express, 2017, 25(26): 32550-32559. doi: 10.1364/OE.25.032550
|
| [73] |
Paradis E, Raithel G, Anderson D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 2019, 100: 013420. doi: 10.1103/PhysRevA.100.013420
|
| [74] |
崔帅威, 彭文鑫, 李松浓, 等. 基于里德堡原子的工频电场测量[J]. 高电压技术, 2023, 49(2):644-650
Cui Shuaiwei, Peng Wenxin, Li Songnong, et al. Power frequency electric field measurement based on Rydberg atoms[J]. High Voltage Engineering, 2023, 49(2): 644-650
|
| [75] |
李伟, 张淳刚, 张好, 等. 基于里德伯原子AC-Stark效应的工频电场测量[J]. 激光与光电子学进展, 2021, 58:1702002
Li Wei, Zhang Chungang, Zhang Hao, et al. Power-frequency electric field measurement based on AC-stark effect of Rydberg atoms[J]. Laser & Optoelectronics Progress, 2021, 58: 1702002
|
| [76] |
Liu Weixin, Zhang Linjie, Wang Tao. Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy[J]. Chinese Physics B, 2023, 32: 053203. doi: 10.1088/1674-1056/aca6db
|
| [77] |
Osterwalder A, Merkt F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 1999, 82(9): 1831-1834. doi: 10.1103/PhysRevLett.82.1831
|
| [78] |
Holloway C, Simons M, Haddab A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 2021, 63(3): 63-76. doi: 10.1109/MAP.2020.2976914
|
| [79] |
Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53: 034001. doi: 10.1088/1361-6455/ab6051
|
| [80] |
Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2455-2462. doi: 10.1109/TAP.2020.2987112
|
| [81] |
Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15: 014053. doi: 10.1103/PhysRevApplied.15.014053
|
| [82] |
Simons M T, Artusio-Glimpse A B, Holloway C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104: 032824. doi: 10.1103/PhysRevA.104.032824
|
| [83] |
Zhang Lihua, Liu Zongkai, Liu Bang, et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 2022, 18: 014033. doi: 10.1103/PhysRevApplied.18.014033
|
| [84] |
Sedlacek J A, Schwettmann A, Kübler H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 2013, 111: 063001. doi: 10.1103/PhysRevLett.111.063001
|
| [85] |
黄巍, 梁振涛, 杜炎雄, 等. 基于里德堡原子的电场测量[J]. 物理学报, 2015, 64:160702 doi: 10.7498/aps.64.160702
Huang Wei, Liang Zhentao, Du Yanxiong, et al. Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 2015, 64: 160702 doi: 10.7498/aps.64.160702
|
| [86] |
任盛源, 景明勇, 张好, 等. 基于原子的射频识别标签近场散射场矢量测量[J]. 光谱学与光谱分析, 2022, 42(1):298-303
Ren Shengyuan, Jing Mingyong, Zhang Hao, et al. Atom-based vector measurement of near field scattering field of radio frequency identification tag[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 298-303
|
| [87] |
Simons M T, Haddab A H, Gordon J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 2019, 7: 164975-164985. doi: 10.1109/ACCESS.2019.2949017
|
| [88] |
Wang Yuhan, Jia Fengdong, Hao Jianhai, et al. Precise measurement of microwave polarization using a Rydberg atom-based mixer[J]. Optics Express, 2023, 31(6): 10449-10457. doi: 10.1364/OE.485662
|
| [89] |
Böhi P, Treutlein P. Simple microwave field imaging technique using hot atomic vapor cells[J]. Applied Physics Letters, 2012, 101: 181107. doi: 10.1063/1.4760267
|
| [90] |
Fan Haoquan, Kumar S, Daschner R, et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 2014, 39(10): 3030-3033. doi: 10.1364/OL.39.003030
|
| [91] |
Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112: 211108. doi: 10.1063/1.5028357
|
| [92] |
Cox K C, Meyer D H, Fatemi F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 2018, 121: 110502. doi: 10.1103/PhysRevLett.121.110502
|
| [93] |
Deb A B, Kjærgaard N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 2018, 112: 211106. doi: 10.1063/1.5031033
|
| [94] |
Jiao Yuechun, Han Xiaoxuan, Fan Jiabei, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 2019, 12: 126002. doi: 10.7567/1882-0786/ab5463
|
| [95] |
Song Zhenfei, Liu Hongping, Liu Xiaochi, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6): 8848-8857. doi: 10.1364/OE.27.008848
|
| [96] |
Holloway C L, Simons M T, Gordon J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1853-1857. doi: 10.1109/LAWP.2019.2931450
|
| [97] |
Menchetti M, Bussey L W, Gilks D, et al. Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator[J]. Journal of Applied Physics, 2023, 133: 014401. doi: 10.1063/5.0129107
|
| [98] |
Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 2018, 113: 094101. doi: 10.1063/1.5045212
|
| [99] |
Simons M T, Gordon J A, Holloway C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 2018, 57(22): 6456-6460. doi: 10.1364/AO.57.006456
|
| [100] |
Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5931-5941. doi: 10.1109/TAP.2021.3060540
|
| [101] |
林沂, 吴逢川, 毛瑞棋, 等. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用[J]. 物理学报, 2022, 71:170702 doi: 10.7498/aps.71.20220594
Yi Li, Wu Fengchuan, Mao Ruiqi, et al. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication[J]. Acta Physica Sinica, 2022, 71: 170702 doi: 10.7498/aps.71.20220594
|
| [102] |
边武, 郑顺元, 李仲启, 等. 可搬运原子微波电场测量仪[J]. 激光与光电子学进展, 2023, 60:1106022
Bian Wu, Zheng Shunyuan, Li Zhongqi, et al. A transportable Rydberg atomic microwave electrometry[J]. Laser & Optoelectronics Progress, 2023, 60: 1106022
|
| [103] |
边武, 李仲启, 梁琼崇, 等. 基于里德堡原子天线的微波场强仪比对验证[J]. 导航与控制, 2022, 21(5/6):185-191,79
Bian Wu, Li Zhongqi, Liang Qiongchong, et al. Comparison experiment of integrated microwave field strength meter based on Rydberg atomic antenna at room temperature[J]. Navigation and Control, 2022, 21(5/6): 185-191,79
|
| [104] |
Simons M T, Haddab A H, Gordon J A, et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 2019, 114: 114101. doi: 10.1063/1.5088821
|
| [105] |
Anderson D A, Sapiro R E, Gonçalves L F, et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 2022, 17: 044020. doi: 10.1103/PhysRevApplied.17.044020
|
| [106] |
Holloway C L, Simons M T, Haddab A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP Advances, 2019, 9: 065110. doi: 10.1063/1.5099036
|
| [107] |
Cardman R, Gonçalves L F, Sapiro R E, et al. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 2020, 9(5): 305-312. doi: 10.1515/aot-2020-0029
|
| [108] |
Liu Zongkai, Zhang Lihua, Liu Bang, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 2022, 13: 1997. doi: 10.1038/s41467-022-29686-7
|
| [109] |
Meyer D H, Hill J C, Kunz P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 2023, 19: 014025. doi: 10.1103/PhysRevApplied.19.014025
|
| [110] |
Liu Xiaohong, Liao Kaiyu, Zhang Zuanxian, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18: 054003. doi: 10.1103/PhysRevApplied.18.054003
|
| [111] |
Noaman M, Amarloo H, Pandiyan R, et al. Vapor cell characterization and optimization for applications in Rydberg atom-based radio frequency sensing[C]. Proceedings of the SPIE 12447, Quantum Sensing, Imaging, and Precision Metrology. 2023: 173-178.
|