| Citation: | Zhang Hangyu, Wu Yi, Zhao Shuai, et al. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36: 079002. doi: 10.11884/HPLPB202436.240030 |
| [1] |
Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429. doi: 10.1103/PhysRevA.52.R3429
|
| [2] |
Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601. doi: 10.1103/PhysRevLett.89.113601
|
| [3] |
Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802(R).
|
| [4] |
Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603. doi: 10.1103/PhysRevLett.104.253603
|
| [5] |
Sun Baoqing, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901. doi: 10.1364/OE.20.016892
|
| [6] |
牟晓霜, 黎淼, 王玺, 等. 基于分块平滑投影二次重构算法的单像素成像系统[J]. 强激光与粒子束, 2022, 34:119002 doi: 10.11884/HPLPB202234.220190
Mou Xiaoshuang, Li Miao, Wang Xi, et al. Single-pixel imaging system based on block smoothed projected quadratic reconstruction algorithm[J]. High Power Laser and Particle Beams, 2022, 34: 119002 doi: 10.11884/HPLPB202234.220190
|
| [7] |
Yang Mochou, Wu Yi, Feng Guoying. Underwater environment laser ghost imaging based on Walsh speckle patterns[J]. Frontiers in Physics, 2023, 11: 1106320. doi: 10.3389/fphy.2023.1106320
|
| [8] |
杨莫愁, 吴仪, 冯国英. 水下鬼成像的研究进展[J]. 光学学报, 2022, 42:1701003 doi: 10.3788/AOS202242.1701003
Yang Mochou, Wu Yi, Feng Guoying. Research progress on underwater ghost imaging[J]. Acta Optica Sinica, 2022, 42: 1701003 doi: 10.3788/AOS202242.1701003
|
| [9] |
Zhao Chengqiang, Gong Wenlin, Chen Mingliang, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101: 141123. doi: 10.1063/1.4757874
|
| [10] |
Gao Xinyu, Mou Jun, Xiong Li, et al. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system[J]. Nonlinear Dynamics, 2022, 108(1): 613-636. doi: 10.1007/s11071-021-07192-7
|
| [11] |
Liu Xuefeng, Yao Xuri, Lan Ruoming, et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 2015, 23(26): 33802-33811. doi: 10.1364/OE.23.033802
|
| [12] |
Mao Tianyi, Chen Qian, He Weiji, et al. Speckle-shifting ghost imaging[J]. IEEE Photonics Journal, 2016, 8: 6900810.
|
| [13] |
Ren Hongdou, Zhao Shengmei, Gruska J. Edge detection based on single-pixel imaging[J]. Optics Express, 2018, 26(5): 5501-5511. doi: 10.1364/OE.26.005501
|
| [14] |
Wang Le, Zou Li, Zhao Shengmei. Edge detection based on subpixel-speckle-shifting ghost imaging[J]. Optics Communications, 2018, 407: 181-185. doi: 10.1016/j.optcom.2017.09.002
|
| [15] |
Ren Hongdou, Wang Le, Zhao Shengmei. Efficient edge detection based on ghost imaging[J]. OSA Continuum, 2019, 2(1): 64-73. doi: 10.1364/OSAC.2.000064
|
| [16] |
樊玉琦, 温鹏飞, 许雄, 等. 基于卷积神经网络的雷达目标航迹识别研究[J]. 强激光与粒子束, 2019, 31:093203 doi: 10.11884/HPLPB201931.180388
Fan Yuqi, Wen Pengfei, Xu Xiong, et al. Research on radar target track recognition based on convolutional neural network[J]. High Power Laser and Particle Beams, 2019, 31: 093203 doi: 10.11884/HPLPB201931.180388
|
| [17] |
Wu Heng, Wang Ruizhou, Zhao Genping, et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 2020, 28(3): 3846-3853. doi: 10.1364/OE.386976
|
| [18] |
Zhu Ruiguo, Yu Hong, Tan Zhijie, et al. Ghost imaging based on Y-net: a dynamic coding and decoding approach[J]. Optics Express, 2020, 28(12): 17556-17569. doi: 10.1364/OE.395000
|
| [19] |
Yang Xu, Yu Zhongyang, Xu Lu, et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 2021, 29(18): 28388-28405. doi: 10.1364/OE.435276
|
| [20] |
邵延华, 冯玉沛, 张晓强, 等. 基于深度学习的光学元件表面疵病识别[J]. 强激光与粒子束, 2022, 34:112002 doi: 10.11884/HPLPB202234.220023
Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, et al. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34: 112002 doi: 10.11884/HPLPB202234.220023
|
| [21] |
Wu Heng, Zhao Genping, Chen Meiyun, et al. Hybrid neural network-based adaptive computational ghost imaging[J]. Optics and Lasers in Engineering, 2021, 140: 106529. doi: 10.1016/j.optlaseng.2020.106529
|
| [22] |
He Xing, Zhao Shengmei, Wang Le. Handwritten digit recognition based on ghost imaging with deep learning[J]. Chinese Physics B, 2021, 30: 054201. doi: 10.1088/1674-1056/abd2a5
|
| [23] |
Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79: 053840. doi: 10.1103/PhysRevA.79.053840
|
| [24] |
Creswell A, Arulkumaran K, Bharath A A. On denoising autoencoders trained to minimise binary cross-entropy[DB/OL]. arXiv preprint arXiv: 1708.08487, 2017.
|
| [25] |
Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
|