Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Zhang Hangyu, Wu Yi, Zhao Shuai, et al. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36: 079002. doi: 10.11884/HPLPB202436.240030
Citation: Zhang Hangyu, Wu Yi, Zhao Shuai, et al. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36: 079002. doi: 10.11884/HPLPB202436.240030

Edge quality improvement of ghost imaging based on convolutional neural network

doi: 10.11884/HPLPB202436.240030
  • Received Date: 2024-01-22
  • Accepted Date: 2024-05-09
  • Rev Recd Date: 2024-05-09
  • Available Online: 2024-05-22
  • Publish Date: 2024-05-31
  • Scatter-shift ghost imaging edge extraction methods require multiple sampling of the object to obtain a high quality edge map. To solve the problem of many samples and long time when extracting the edge of the object by scatter-shift ghost imaging, convolutional neural network is adopted to the edge extraction experiment of ghost imaging. Firstly, the unknown image is irradiated by Walsh scattering, the sampled signal collected by the barrel detector is input to the ghost imaging edge extraction network as the image feature information, finally the edge information map of the detected object is directly outputted by the trained network, and the output of the convolutional neural network is optimized by using the non-maximum value suppression algorithm. The experimental results show that for the reconstructed object of 128×128 pixels, the signal-to-noise ratio and structural similarity index of the ghost imaging edge extraction network output edge pattern are 5 times and 2 times higher than that of the scatter-shift ghost imaging respectively when the sampling number is 1600, which successfully improves the quality of the ghost imaging edge extraction under the low sampling rate and reduces the sampling time. The ghost imaging edge extraction scheme using convolutional neural network is conducive to fast and high-quality edge detection of ghost imaging in practical applications of object recognition and security inspection.
  • loading
  • [1]
    Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429. doi: 10.1103/PhysRevA.52.R3429
    [2]
    Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601. doi: 10.1103/PhysRevLett.89.113601
    [3]
    Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802(R).
    [4]
    Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603. doi: 10.1103/PhysRevLett.104.253603
    [5]
    Sun Baoqing, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901. doi: 10.1364/OE.20.016892
    [6]
    牟晓霜, 黎淼, 王玺, 等. 基于分块平滑投影二次重构算法的单像素成像系统[J]. 强激光与粒子束, 2022, 34:119002 doi: 10.11884/HPLPB202234.220190

    Mou Xiaoshuang, Li Miao, Wang Xi, et al. Single-pixel imaging system based on block smoothed projected quadratic reconstruction algorithm[J]. High Power Laser and Particle Beams, 2022, 34: 119002 doi: 10.11884/HPLPB202234.220190
    [7]
    Yang Mochou, Wu Yi, Feng Guoying. Underwater environment laser ghost imaging based on Walsh speckle patterns[J]. Frontiers in Physics, 2023, 11: 1106320. doi: 10.3389/fphy.2023.1106320
    [8]
    杨莫愁, 吴仪, 冯国英. 水下鬼成像的研究进展[J]. 光学学报, 2022, 42:1701003 doi: 10.3788/AOS202242.1701003

    Yang Mochou, Wu Yi, Feng Guoying. Research progress on underwater ghost imaging[J]. Acta Optica Sinica, 2022, 42: 1701003 doi: 10.3788/AOS202242.1701003
    [9]
    Zhao Chengqiang, Gong Wenlin, Chen Mingliang, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101: 141123. doi: 10.1063/1.4757874
    [10]
    Gao Xinyu, Mou Jun, Xiong Li, et al. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system[J]. Nonlinear Dynamics, 2022, 108(1): 613-636. doi: 10.1007/s11071-021-07192-7
    [11]
    Liu Xuefeng, Yao Xuri, Lan Ruoming, et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 2015, 23(26): 33802-33811. doi: 10.1364/OE.23.033802
    [12]
    Mao Tianyi, Chen Qian, He Weiji, et al. Speckle-shifting ghost imaging[J]. IEEE Photonics Journal, 2016, 8: 6900810.
    [13]
    Ren Hongdou, Zhao Shengmei, Gruska J. Edge detection based on single-pixel imaging[J]. Optics Express, 2018, 26(5): 5501-5511. doi: 10.1364/OE.26.005501
    [14]
    Wang Le, Zou Li, Zhao Shengmei. Edge detection based on subpixel-speckle-shifting ghost imaging[J]. Optics Communications, 2018, 407: 181-185. doi: 10.1016/j.optcom.2017.09.002
    [15]
    Ren Hongdou, Wang Le, Zhao Shengmei. Efficient edge detection based on ghost imaging[J]. OSA Continuum, 2019, 2(1): 64-73. doi: 10.1364/OSAC.2.000064
    [16]
    樊玉琦, 温鹏飞, 许雄, 等. 基于卷积神经网络的雷达目标航迹识别研究[J]. 强激光与粒子束, 2019, 31:093203 doi: 10.11884/HPLPB201931.180388

    Fan Yuqi, Wen Pengfei, Xu Xiong, et al. Research on radar target track recognition based on convolutional neural network[J]. High Power Laser and Particle Beams, 2019, 31: 093203 doi: 10.11884/HPLPB201931.180388
    [17]
    Wu Heng, Wang Ruizhou, Zhao Genping, et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 2020, 28(3): 3846-3853. doi: 10.1364/OE.386976
    [18]
    Zhu Ruiguo, Yu Hong, Tan Zhijie, et al. Ghost imaging based on Y-net: a dynamic coding and decoding approach[J]. Optics Express, 2020, 28(12): 17556-17569. doi: 10.1364/OE.395000
    [19]
    Yang Xu, Yu Zhongyang, Xu Lu, et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 2021, 29(18): 28388-28405. doi: 10.1364/OE.435276
    [20]
    邵延华, 冯玉沛, 张晓强, 等. 基于深度学习的光学元件表面疵病识别[J]. 强激光与粒子束, 2022, 34:112002 doi: 10.11884/HPLPB202234.220023

    Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, et al. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34: 112002 doi: 10.11884/HPLPB202234.220023
    [21]
    Wu Heng, Zhao Genping, Chen Meiyun, et al. Hybrid neural network-based adaptive computational ghost imaging[J]. Optics and Lasers in Engineering, 2021, 140: 106529. doi: 10.1016/j.optlaseng.2020.106529
    [22]
    He Xing, Zhao Shengmei, Wang Le. Handwritten digit recognition based on ghost imaging with deep learning[J]. Chinese Physics B, 2021, 30: 054201. doi: 10.1088/1674-1056/abd2a5
    [23]
    Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79: 053840. doi: 10.1103/PhysRevA.79.053840
    [24]
    Creswell A, Arulkumaran K, Bharath A A. On denoising autoencoders trained to minimise binary cross-entropy[DB/OL]. arXiv preprint arXiv: 1708.08487, 2017.
    [25]
    Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (601) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return