Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Yi Huaiqian, Wang Xiaofan, Zhang Weiqing. Generation and spatial separation of circular polarized FEL radiations by orbit control[J]. High Power Laser and Particle Beams, 2024, 36: 071003. doi: 10.11884/HPLPB202436.240082
Citation: Yi Huaiqian, Wang Xiaofan, Zhang Weiqing. Generation and spatial separation of circular polarized FEL radiations by orbit control[J]. High Power Laser and Particle Beams, 2024, 36: 071003. doi: 10.11884/HPLPB202436.240082

Generation and spatial separation of circular polarized FEL radiations by orbit control

doi: 10.11884/HPLPB202436.240082
  • Received Date: 2024-03-08
  • Accepted Date: 2024-05-15
  • Rev Recd Date: 2024-05-15
  • Available Online: 2024-05-27
  • Publish Date: 2024-05-31
  • Circularly polarized radiation in the X-ray region is required by many experimental applications. Such demands can be met at FEL facilities by mounting few helical undulators after the planar undulators. For obtaining high degree of circular polarized radiation, the reverse taper technique is often used, where in the planar section, significant bunching of the electron beam is accumulated while the output linear polarized radiation power is suppressed. This paper investigates the technique of spatially separating the background weak linear radiation by first transversely deflecting the electron beam with dipole kicker magnets in the planar undulator section and correcting its orbit and traveling direction before entering the helical undulators. The resulting linearly and circularly polarized radiations will propagate in slightly different directions and can be separated spatially. Numerical simulations are performed to analyze the impact of electron beam deflection on the radiation properties.
  • loading
  • [1]
    Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233
    [2]
    Milne C J, Schietinger T, Aiba M, et al. SwissFEL: the Swiss X-ray free electron laser[J]. Applied Sciences, 2017, 7(7): 720. doi: 10.3390/app7070720
    [3]
    Ferrari E, Allaria E, Buck J, et al. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators[J]. Scientific Reports, 2015, 5(1): 13531. doi: 10.1038/srep13531
    [4]
    Ferrari E, Roussel E, Buck J, et al. Free electron laser polarization control with interfering crossed polarized fields[J]. Physical Review Accelerators and Beams, 2019, 22(8): 080701. doi: 10.1103/PhysRevAccelBeams.22.080701
    [5]
    Saldin E L, Schneidmiller E A, Yurkov M V. Coherence properties of the radiation from SASE FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 106-109.
    [6]
    Li Y, Faatz B, Pflueger J. Polarization properties of a crossed planar undulator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613(1): 163-168.
    [7]
    Tian K, Nuhn H D. Numerical study of the DELTA II polarizing undulator for LCLS II[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 1899-1902.
    [8]
    Schmidt T, Calvi M. APPLE X undulator for the SwissFEL soft X-ray beamline Athos[J]. Synchrotron Radiation News, 2018, 31(3): 35-40. doi: 10.1080/08940886.2018.1460174
    [9]
    Schneidmiller E A, Yurkov M V. Obtaining high degree of circular polarization at X-ray free electron lasers via a reverse undulator taper[J]. Physical Review Special Topics-Accelerators and Beams, 2013, 16(11): 110702. doi: 10.1103/PhysRevSTAB.16.110702
    [10]
    Schneidmiller E A, Yurkov M V. Reverse undulator tapering for polarization control and background-free harmonic production in XFELs: results from flash[C]//Proceedings of the 38th International Free Electron Laser Conference. 2017: 106-108.
    [11]
    Karabekyan S, Abeghyan S, Bagha-Shanjani M, et al. The status of the SASE3 variable polarization project at the European XFEL[C]//Proceedings of the 13th International Particle Accelerator Conference. 2022: 1029-1032.
    [12]
    Lutman A A, MacArthur J P, Ilchen M, et al. Polarization control in an X-ray free-electron laser[J]. Nature Photonics, 2016, 10(7): 468-472. doi: 10.1038/nphoton.2016.79
    [13]
    Nuhn H D, Anderson S D, Coffee R N, et al. Commissioning of the delta polarizing undulator at LCLS[C]//Proceedings of FEL2015. 2015: 757-763.
    [14]
    Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
    [15]
    Wang Xiaofan, Zeng Li, Shao Jiahang, et al. Physical design for Shenzhen Superconducting Soft X-ray Free-Electron Laser (S3FEL)[C]//Proceedings of the International Particle Accelerator Conference. 2023: 1852-1855.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (751) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return