| Citation: | Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002. doi: 10.11884/HPLPB202436.240106 |
| [1] |
Gotchev O V, Chang Poyu, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004
|
| [2] |
McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Physics of Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
|
| [3] |
McBride R D, Slutz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004
|
| [4] |
Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
|
| [5] |
Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
|
| [6] |
赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32:052001 doi: 10.11884/HPLPB202032.190357
Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of magnetized liner inertial fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001 doi: 10.11884/HPLPB202032.190357
|
| [7] |
肖德龙, 王小光, 王冠琼, 等. 7~8 MA条件下MagLIF集成实验关键问题理论研究与设计[J]. 强激光与粒子束, 2023, 35:022001 doi: 10.11884/HPLPB202335.220253
Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001 doi: 10.11884/HPLPB202335.220253
|
| [8] |
Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
|
| [9] |
Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
|
| [10] |
Chen Shijia, Yang Xiaohu, Wu Fuyuan, et al. Electrothermal effects on high-gain magnetized liner inertial fusion[J]. Plasma Physics and Controlled Fusion, 2021, 63: 115019. doi: 10.1088/1361-6587/ac234d
|
| [11] |
Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Physics of Plasmas, 2015, 22: 042702. doi: 10.1063/1.4916777
|
| [12] |
Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 056312. doi: 10.1063/1.2716406
|
| [13] |
Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426
|
| [14] |
Milovich J L, Amendt P, Marinak M, et al. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs[J]. Physics of Plasmas, 2004, 11(4): 1552-1568. doi: 10.1063/1.1646161
|
| [15] |
Ramis R. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications[J]. Journal of Computational Physics, 2017, 330: 173-191. doi: 10.1016/j.jcp.2016.11.011
|
| [16] |
Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
|
| [17] |
Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X
|
| [18] |
Eidmann K. Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas[J]. Laser and Particle Beams, 1994, 12(2): 223-244. doi: 10.1017/S0263034600007709
|
| [19] |
Murakami M, Meyer-ter-Vehn J, Ramis R. Thermal X-ray emission from ion-beam-heated matter[J]. Journal of X-Ray Science and Technology, 1990, 2(2): 127-148. doi: 10.3233/XST-1990-2204
|
| [20] |
Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
|
| [21] |
吴福源, 褚衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201
Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
|
| [22] |
Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 205-311.
|
| [23] |
赵海龙, 王刚华, 肖波, 等. 磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响[J]. 物理学报, 2021, 70:135201 doi: 10.7498/aps.70.20202215
Zhao Hailong, Wang Ganghua, Xiao Bo, et al. Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion[J]. Acta Physica Sinica, 2021, 70: 135201 doi: 10.7498/aps.70.20202215
|