| Citation: | Liu Luyao, Jin Xiao, Cai Jinliang. Prediction of system-level electric field radiated emission based on ANN reverse model[J]. High Power Laser and Particle Beams, 2024, 36: 099002. doi: 10.11884/HPLPB202436.240177 |
| [1] |
赵辉. 系统电磁兼容[M]. 北京: 国防工业出版社, 2019
Zhao Hui. System electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2019
|
| [2] |
Kraft C H. Modeling leakage through finite apertures with TLM[C]//Proceedings of the IEEE Symposium on Electromagnetic Compatibility. 1994: 73-76.
|
| [3] |
Kunz K S, Luebbers R J. The finite difference time domain method for electromagnetics[M]. Boca Raton: CRC Press, 1993.
|
| [4] |
Cerri G, De Leo R, Primiani V M. Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosure[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(4): 423-432. doi: 10.1109/15.179275
|
| [5] |
李永明, 祝言菊, 李旭, 等. 电磁兼容的人工神经网络预测技术分析[J]. 重庆大学学报, 2008, 31(11):1313-1316,1322
Li Yongming, Zhu Yanju, Li Xu, et al. Artificial neural networks-based prediction of electromagnetic compatibility problems[J]. Journal of Chongqing University, 2008, 31(11): 1313-1316,1322
|
| [6] |
Shi Dan, Gao Yougang. A new method for identifying electromagnetic radiation sources using backpropagation neural network[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 842-848. doi: 10.1109/TEMC.2012.2237176
|
| [7] |
Shi Dan, Fang Wei, Zhang Fangfei, et al. A novel method for intelligent EMC management using a “knowledge base”[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1621-1626. doi: 10.1109/TEMC.2018.2797053
|
| [8] |
Kuo M J, Lin T C. Dynamical optimal training for behavioral modeling of nonlinear circuit elements based on radial basis function neural network[C]//Proceedings of 2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility. 2008.
|
| [9] |
Li Xu, Yu Jihui, Zhu Yanju, et al. Prediction of electromagnetic compatibility problems based on artificial neural networks[C]//Proceedings of 2008 World Automation Congress. 2008.
|
| [10] |
Belkacem F T, Bensetti M, Laour M, et al. The analytical, numerical and neural network evaluation versus experimental of electromagnetic shielding effectiveness of a rectangular enclosure with apertures[C]//Proceedings of the IEEE 9th International Conference on Cybernetic Intelligent Systems. 2010.
|
| [11] |
Devabhaktuni V, Bunting C F, Green D, et al. A new ANN-based modeling approach for rapid EMI/EMC analysis of PCB and shielding enclosures[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(2): 385-394. doi: 10.1109/TEMC.2012.2214223
|
| [12] |
Chahine I, Kadi M, Gaboriaud E, et al. Using neural networks for predicting the integrated circuits susceptibility to conducted electromagnetic disturbances[C]//Proceedings of 2007 18th International Zurich Symposium on Electromagnetic Compatibility. 2007: 13-16.
|
| [13] |
Burghardt F, Garbe R. Introduction of artificial neural networks in EMC[C]//Proceedings of 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity. 2018.
|
| [14] |
Hager W W, Zhang Hongchao. A new conjugate gradient method with guaranteed descent and an efficient line search[J]. SIAM Journal on Optimization, 2005, 16(1): 170-192. doi: 10.1137/030601880
|
| [15] |
丛爽. 面向MATLAB工具箱的神经网络理论与应用[M]. 合肥: 中国科学技术大学出版社, 2009
Cong Shuang. Neural network theory and applications with MATLAB toolboxes[M]. Hefei: University of Science and Technology of China Press, 2009
|